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The SHRP 2 Naturalistic Driving Study (NDS) was the largest and most comprehensive 
study of its kind ever undertaken. Its central goal was to produce unparalleled data from 
which to study the role of driver performance and behavior in traffic safety and how driver 
behavior affects the risk of crashes. Such research involves understanding how a driver inter-
acts with and adapts to the vehicle, the traffic environment, roadway characteristics, traffic 
control devices, and other environmental features. After-the-fact crash investigations can 
only provide this information indirectly. The NDS data recorded how drivers really drove 
and what they were doing just before they crashed or almost crashed.

The Roadway Information Database (RID), created in parallel with the NDS, contains 
detailed roadway data collected on more than 12,500 centerline miles of highways in and 
around the six study sites, about 200,000 highway miles of data from the highway invento-
ries of the six study states, and additional data on crash histories, traffic and weather condi-
tions, work zones, and ongoing safety campaigns in the study sites.

The NDS and RID data can be linked to associate driving behavior with the roadway 
environment. The data will be used for years to come for developing and evaluating safety 
countermeasures designed to prevent or reduce the severity of traffic crashes and injuries.

The NDS collected data from more than 3,000 male and female volunteer passenger-vehicle 
drivers, aged 16 to 98, during a 3-year period. Most drivers participated from 1 to 2 years. It 
was conducted at one site in each of six states: Florida, Indiana, New York, North Carolina, 
Pennsylvania, and Washington. Data collected included vehicle speed, acceleration, and 
braking; vehicle controls, when available; lane position; forward radar; and video views 
forward, to the rear, and on the driver’s face and hands. The NDS data file contains about 
50 million vehicle miles, 5 million trips, more than 3,900 vehicle years, and more than  
1 million hours of video—a total of about 2 petabytes of data.

Four contracts were awarded in 2012 under SHRP 2 Safety Project S08, Analysis of the 
SHRP 2 Naturalistic Driving Study Data, to study specific research questions using the early 
NDS and RID data. An open competition solicited proposals to address topics of the con-
tractor’s own choosing that would have direct safety applications and that would

• Lead to real-world applications and safety benefits (theoretical knowledge without poten-
tial applications was not a priority);

• Be broadly applicable to a substantial number of drivers, roadways, or vehicles in the 
United States; and

• Demonstrate the use of the unique NDS data (i.e., similar results could not be obtained 
from existing nonnaturalistic data sets).

In addition to these goals, SHRP 2 expected the projects to serve as both pilot testers and 
advisers. As they conducted these first substantial NDS and RID analyses, these studies’ 
experienced researchers would discover valuable insights on a host of both pitfalls and 
opportunities that others should know about when they use the data.

F O R E W O R D
James Hedlund, SHRP 2 Special Consultant, Safety Coordination



The four projects began in February 2012 and were conducted in two phases. In Phase 1, 
which concluded in December 2012, contractors obtained an initial set of data, tested and 
refined their research plans, and developed detailed plans for their full analyses. Three 
projects successfully completed this proof of concept and were selected for Phase 2. These 
three projects obtained and analyzed a much richer, though still preliminary, data set and 
reported their results in July 2014. This report, Analysis of Naturalistic Driving Study Data: 
Roadway Departures on Rural Two-Lane Curves, documents one of the three projects.

These projects were conducted while the NDS and RID data files were being built. This 
circumstance imposed constraints that substantially affected the researchers’ work. The 
constraints included the following:

• Sample size. In summer 2013, when the projects requested full data sets, the NDS data file 
was only 20% to 30% complete. As a result, each project could only obtain a fraction of 
the trips of interest now available in the full NDS data.

• RID not complete and not linked to the NDS. Projects based on roads of specific types 
or locations could not identify these roads from the RID but instead had to use Google 
Earth or a similar database to identify them. They then obtained trips of interest by using 
searches through the NDS that were less efficient than will be possible when the NDS and 
RID are linked.

• Data processing. Some data, such as radar, had not been processed from their raw state to 
a form where they were fully ready for analysis.

• Data quality. NDS data are field data, and field data are inherently somewhat messy. At 
the time these projects obtained their data, some data had not been quality controlled, 
and some characteristics of the data were not yet well understood.

• Tools for data users. Not all crashes and near crashes had been identified, and a separate 
small data set containing only crashes, near crashes, and baseline exposure segments had 
not been built. In addition, a small trip summary file containing key features of each trip 
had not been built. Users can conduct initial analyses on many subjects quickly and easily 
using a trip summary file.

• Other demands on data file managers. The first priority for the NDS manager, Virginia 
Tech Transportation Institute (VTTI), and the RID manager, Iowa State University’s 
Center for Transportation Research and Education (CTRE), was to complete data pro-
cessing and quality control. Field data were being ingested continually. Data delivery for 
users was sometimes delayed because of these demands on their resources.

These issues are being resolved in 2014. The NDS and RID data are complete and are 
being linked. Data processing and quality control are being completed. Crash and near-
crash files and trip summary files are being built.

If this project and the other two were to begin in 2015, each would have more data and 
would obtain the data far more easily and quickly. Readers should keep these constraints 
in mind as they read this report. Despite working under these constraints, the three NDS 
projects have produced valuable new insights into important traffic safety issues that will 
help reduce traffic crashes and injuries.

For an overview of the study, see the following article: K. L. Campbell, The SHRP 2 
Naturalistic Driving Study: Addressing Driver Performance and Behavior in Traffic Safety, 
TR News, No. 282, September–October 2012, pp. 30–35. Additional details may be found at 
the study’s InSight website: https://insight.shrp2nds.us/.

https://insight.shrp2nds.us/
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Project Objectives

Rural curves are known to pose a significant safety problem, but the interaction between the 
driver and roadway environment is not well understood. Thus, the objective of this research was 
to assess the relationship between driver behavior and characteristics, roadway factors, environ-
mental factors, and the likelihood of roadway departures on rural two-lane curves.

To accomplish this, data from the second Strategic Highway Research Program (SHRP 2) Natu-
ralistic Driving Study (NDS) and Roadway Information Database (RID) were used to develop 
relationships between driver, roadway, and environmental characteristics and the risk of a road-
way departure on curves.

The project focused on rural two-lane curves on paved roadways. Only paved roadways were 
included because the machine vision application used in the lane-tracking system does not func-
tion well when lane lines or obvious discontinuities between the lane and shoulder surface are 
not present. Rural was defined as one or more miles outside an urban area. Additionally, only 
roadways posted at 64 km/h to 97 km/h (40 mph to 60 mph) were included.

Research Questions Addressed

This research was tailored to address four fundamental research questions:

1. What defines the curve area of influence?
2. What defines normal behavior on curves?
3. What is the relationship between driver distractions; other driver, roadway, and environmental 

characteristics; and risk of roadway departure?
4. Can lane position at a particular state be predicted as a function of position in a prior state?

Each question addresses the problem from a different perspective. As a result, a different meth-
odology was proposed for each, as described in the corresponding sections.

Data Collection and Reduction

Chapter 3 summarizes how Institutional Review Board (IRB) approval and data requests were 
completed; it also describes data reduction. The team manually identified rural curves in Florida, 
New York, Indiana, Pennsylvania, and North Carolina based on information about where trips 
were likely to have occurred. Segments were provided to Virginia Tech Transportation Institute 
(VTTI) staff, who identified trips through those segments.

Executive Summary
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Roadway, environmental, and operational characteristics were extracted as described in Chap-
ter 4. Site visits were made to the VTTI secure data enclave to reduce driver glance location and 
distraction for each trace.

Crash Surrogates

The use of crash surrogates was necessary because only one crash and three near crashes were 
available at the time this research was conducted. Chapter 5 discusses the rationale for selection 
of the identified crash surrogates. A number of potential crash surrogates were considered 
against the data available and the expected accuracy of relevant variables in the NDS data (e.g., 
lane position, forward radar, vehicle position). Lane offset was the best crash surrogate, but lane 
offset was not reliable in a number of traces. As a result, it was used for Research Questions 2 
and 4, resulting in a smaller sample of data for those research questions.

Because offset was not reliable in a number of traces, the research team determined that encroach-
ments would be the best crash surrogate for Research Question 3. A right-side encroachment is 
defined as the right side of the vehicle crossing the right lane line, and a left-side encroachment is 
defined as the left side of the vehicle crossing the centerline.

Results and Discussion

Since four fundamental research questions were addressed, a different methodology was devel-
oped specific to each, as outlined in Chapters 6 through 9. In addition to the analytical method, 
these chapters discuss the data sampling and segmentation approach, general variables consid-
ered, results, and implications. The following sections provide a brief summary of findings and 
implications for each research question.

Research Question 1

Answering Research Question 1 entailed understanding at what point drivers begin reacting to 
the presence of a curve upstream of the curve. Understanding where drivers begin to react to the 
curve is important for placement of traffic control and countermeasures. A better understanding 
can also help agencies determine optimal placement of advance signing and other counter-
measures. Research Question 1 was also used to indicate the curve area of influence for Research 
Questions 2, 3, and 4.

Time series data were modeled using regression and Bayesian analysis. Results indicate that, 
depending on radius of curve, drivers begin reacting to the curve 164 m to 180 m (538.1 ft to 
590.6 ft) upstream of the point of curvature. These results were compared with sign placement 
guidelines in the Manual on Uniform Traffic Control Devices (Federal Highway Administration 
2009), and it was determined that the guidelines are appropriately set based on where drivers 
actually react to the curve.

Research Question 1 also found that drivers begin reacting to the curve sooner for curves with 
larger radii than for curves with smaller radii. Drivers may not be able to gauge the sharpness of 
the curve, or sight distance issues may be a concern for sharper curves.

This suggests that use of countermeasures—such as chevrons or raised pavement markings 
(RPMs)—that better delineate the curve may provide better advance information for drivers. It 
should be noted that the model only identified the point at which drivers reacted to the curve. 
This research question did not attempt to answer whether the reaction point was sufficient for 
drivers to successfully negotiate the curve.

Research Question 2

Research Question 2 developed conceptual models of curve driving to assess changes in metrics 
as the driver negotiates the curve. Understanding how a driver normally negotiates a curve 
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provides insight not only into how characteristics of the roadway, driver, and environment 
potentially influence driving behavior, but also into areas that can lead to roadway departures. 
Knowing how much drivers normally deviate in their lane, as well as how they choose their 
speed, could potentially have implications on policy or design.

Data for several positions upstream and along the curve were sampled from the time series 
data. Models were developed for lane position and speed for both inside (right-hand curve from 
the perspective of the driver) and outside (left-hand curve from the perspective of the driver). 
Lane position was modeled as the offset of the center of the vehicle from the center of the lane. 
Models were developed using generalized least squares.

Results indicate that lane position within the curve is influenced by lane position upstream of 
the curve. The models developed for offset of lane centerline found that drivers who were dis-
tracted or who glanced away from the roadway tended to shift away from the center of the lane. 
When driving on the inside of the lane, a driver who was distracted at a particular point within 
the curve tended to shift 0.14 m to the right by the next point in the curve. When driving on the 
outside (left-hand curve), a driver who engaged in a non-roadway-related glance at a particular 
location within the curve was expected to move to the left, or toward the centerline by 0.13 m at 
that same point. This confirms the role of distraction in lane keeping.

Additionally, the models found that drivers on the inside of a curve tended to move more to 
the right at the center of curve, while drivers on the outside of curves were at the furthest point 
from the lane centerline at the beginning of the curve. As a result, drivers may be particularly 
vulnerable to roadway departures at certain points in the curve negotiation process. These results 
suggest that countermeasures such as rumble strips, paved shoulders, and high-friction treat-
ments may ameliorate the consequences of variations in lane position through the curve.

Additionally, the lane offset models indicate that age and nighttime driving are factors in driver 
lane position.

The model for speeding in the curve found that if drivers are speeding in the upstream, they 
will also speed in the curve. Drivers of sport utility vehicles (SUVs) and pick-up trucks traveled 
on average 2.1 km/h (1.3 mph) faster than drivers of passenger vehicles.

Speeds were predicted to be 0.9 km/h (0.5 mph) lower for each additional 10 years in age for 
a driver, and drivers engaged in a non-roadway-related glance are expected to travel 5.3 km/h 
(3.3 mph) slower than drivers who do not engage in a non-roadway-related glance. This suggests 
that drivers whose attention is focused away from the roadway do not maintain longitudinal 
control.

The results indicate that distractions/nonroadway glances affect lateral and longitudinal 
control. Although drivers are more likely to travel at slower speeds, they are more likely to vary 
within their lane.

The models also confirm that speed plays an important role in curve negotiation. This suggests 
that effective speed management countermeasures will have an impact on curve negotiation. 
Speed management countermeasures include better delineation of the curve (i.e., chevrons, edge 
lines, post-mounted delineators) so that drivers can better estimate the sharpness of the curve. 
Other measures, such as transverse speed markings or speed feedback signs, target drivers who are 
traveling over the speed limit.

Research Question 3

Research Question 3 addressed how driver behavior in conjunction with roadway and envi-
ronmental factors affect the likelihood of a roadway departure on rural two-lane curves. Four 
different models were developed using multivariate logistic regression. Two models evaluated 
the probability (odds) of a right-side or left-side encroachment based on driver, roadway, and 
environmental characteristics. Two additional models evaluated the probability that a driver 
would exceed the advisory speed if present or posted speed limit if not present at the curve 
entry by 8 km/h and 16 km/h or more (5 mph and 10 mph or more). Data were aggregated to 
the event level.
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The model for right-side encroachments indicates that the probability increases as drivers 
spend less time glancing at the forward roadway. The results also indicate that a right-side lane 
departure is 6.8 times more likely on the inside of a curve compared with the outside of the curve. 
Lane departures are slightly more likely (1.3 times) for curves with any type of curve advisory 
sign (including W1-6). It is unlikely that the presence of a warning sign itself increases the prob-
ability. Rather, it is likely that advisory signs are more likely to be present on curves of a certain 
type (i.e., those with sight distance issues, sharper curves), and encroachments are also more 
likely for those road types. Additionally, the results suggest that the simple presence of curve 
warning signs may not mitigate roadway departures.

A statistically significant but small correlation exists between radius of curve and probability 
of a right-side encroachment. Drivers were 0.33 times less likely to have a right-side encroach-
ment on roadways with a guardrail. Presence of a guardrail decreased the probability of a right-
side encroachment. The purpose of a guardrail is to mitigate the consequences of a driver leaving 
the roadway rather than to keep the driver from leaving the roadway. Consequently, a guardrail 
in and of itself does not mitigate roadway departures. The presence of a guardrail may suggest 
to the driver that roadway conditions are less safe, resulting in better driver attention. Addition-
ally, few delineation countermeasures (e.g., chevrons) were present in the curves included in the 
analysis. As a result, a guardrail may provide some delineation of the curve, which provides 
feedback to the driver about the sharpness of the curve.

The model for left-side encroachments indicates that males are more than four times more 
likely to have a left-side lane departure, and drivers traveling on the inside of the curve are 0.1 times 
less likely to have a left-side encroachment than drivers traveling on the outside of the curve. The 
impact of radius was statistically significant but minor.

The probability that a driver will be 8 km/h (5 mph or more) over the posted/advisory speed 
is higher when the driver is younger and has a higher average speed upstream and when edge 
line markings are obscured or not present. The amount of time a driver spends following 
another vehicle, presence of lower visibility conditions, and presence of paved shoulders and 
RPMs decrease the probability that he or she will enter the curve 5 mph or more over the posted/
advisory speed.

The probability that a driver will be 16 km/h (10 mph or more) over the posted/advisory speed 
is higher when the driver has a higher average speed upstream. The probability is lower when the 
average glance at roadway-related tasks is longer and when paved shoulders and RPMs are 
present.

Results from the right-side encroachment and speed models suggest that better curve delinea-
tion may allow drivers to better gauge upcoming changes in roadway geometry, resulting in 
better speed selection and decreased risk of a roadway departure, and may help decrease speed. 
Delineation countermeasures include chevrons, the addition of reflective panels to existing chev-
ron posts, reflective barrier delineation, RPMs, post-mounted delineators, edge lines, and wider 
edge lines.

The speed models suggest that driver age and upstream speed have a significant impact on 
drivers’ speed within a curve. As a result, speed management countermeasures that affect tangent 
speed will also decrease curve speeds. The results also indicate that speed management is appro-
priate to get drivers’ attention before entering a curve. Countermeasures specifically targeted to 
reduce speed on curves include dynamic speed feedback signs, on-pavement curve warning 
signs, and flashing beacons.

Research Question 4

Research Question 4 focused more specifically on driver response to changing roadway charac-
teristics and traffic conditions. Time series models were developed to incorporate the dynamic 
process of information acquisition and response as a driver negotiates a curve. The analysis 
evaluated the influence of roadway geometries or traffic conditions on drivers’ lane-keeping 
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behavior. For example, drivers on a rural two-lane roadway tend to have larger lane deviation 
from the centerline when there is an oncoming vehicle.

Two types of dynamic linear models (DLMs) were built in this study to describe and explain 
the curve negotiation process: DLM with intervention analysis and DLM with autoregression 
and moving average (ARMA). The DLM with intervention analysis was mainly used for explana-
tory purposes, relating lane offset to curve characteristics and traffic conditions. The DLM with 
ARMA was mainly used for forecasting purposes, which could be used for a roadway departure 
warning system.

Only limited data were used in the analyses, given that the objective was to demonstrate the 
utility of the approach. Results indicate that lane position can successfully be modeled as a func-
tion of vehicle position in a prior state and as a function of other characteristics such as position 
within the curve or presence of oncoming vehicles. The methodology shows promise for use in 
development of roadway departure crash warning systems.
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The second Strategic Highway Research Program (SHRP 2) 
conducted the largest and most comprehensive naturalistic 
driving study (NDS) ever undertaken. The study collected 
data from more than 3,000 male and female volunteer  
passenger-vehicle drivers, aged 16 to 98, during a 3-year period, 
with most drivers participating from 1 year to 2 years. The 
study was conducted in six sites, one each in Florida, Indiana, 
New York, North Carolina, Pennsylvania, and Washington. 
Data collected include vehicle speed, acceleration, and brak-
ing; vehicle controls when available; lane position; forward 
radar; and video views forward, to the rear, and on the driver’s 
face and hands. The NDS data file contains about 50 million 
vehicle miles, 5 million trips, more than 3,900 vehicle years, 
and more than 1 million hours of video—a total of about 
2 peta bytes of data.

In parallel, the Roadway Information Database (RID) con-
tains detailed roadway data collected on more than 12,500 
centerline miles of highways in and around the study sites, 
about 200,000 highway miles of data from the highway inven-
tories of the six study states, and additional data on crash his-
tories, traffic and weather conditions, work zones, and ongoing 
safety campaigns in the study sites. The NDS and RID data 
can be linked to associate driving behavior with the roadway 
environment.

Campbell (2012) provides an excellent overview of the 
study. Additional details may be found at the study’s InSight 
website (https://insight.shrp2nds.us/).

The study’s central goal is to produce unparalleled data 
from which to study the role of driver performance and 
behavior in traffic safety and how driver behavior affects the 
risk of crashes. This involves understanding how the driver 
interacts with and adapts to the vehicle, the traffic environ-
ment, roadway characteristics, traffic control devices, and 
other environmental features. After-the-fact crash investiga-
tions can do this only indirectly. The NDS data record how 
drivers really drive and what they are doing just before they 
crash or almost crash. The NDS and RID data will be used for 

years to come to develop and evaluate safety countermeasures 
designed to prevent or reduce the severity of traffic crashes 
and injuries.

The First SHRP 2 NDS  
Analysis Projects

Four contracts were awarded in 2012 under SHRP 2 Project 
S08, Analysis of the SHRP 2 Naturalistic Driving Study Data, 
to study specific research questions using the early SHRP 2 
NDS and RID data. An open competition solicited proposals 
to address topics of the contractor’s own choosing that would 
have direct safety applications. The request for proposals 
required proposals that would

•	 Lead to real-world applications and safety benefits (theo-
retical knowledge without potential applications was not a 
priority);

•	 Be broadly applicable to a substantial number of drivers, 
roadways, and/or vehicles in the United States; and

•	 Demonstrate the use of the unique NDS data (i.e., similar 
results could not be obtained from existing nonnaturalistic 
data sets).

In addition to these goals, SHRP 2 expected these projects 
to serve as both pilot testers and advisers. As they conducted 
these first substantial NDS and RID analyses, these studies’ 
experienced researchers would discover valuable insights on 
a host of both pitfalls and opportunities that others should 
know about when they use the data. That experience and 
advice can be found on the study’s InSight website (https://
insight.shrp2nds.us/).

The four projects began in February 2012 and were con-
ducted in two phases. In Phase 1, which concluded in Decem-
ber 2012, the four contractors each obtained an initial set of 
data, tested and refined their research plan, and developed a 
detailed plan for their full analyses. Three projects, of which 

C H A P T e R  1

SHRP 2 Naturalistic Driving Study Background

https://insight.shrp2nds.us/
https://insight.shrp2nds.us/
https://insight.shrp2nds.us/
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data, some data had not been quality controlled and some 
characteristics of the data were not yet well understood.

•	 Tools for data users. Not all crashes and near crashes had 
been identified, and a separate small data set containing only 
crashes, near crashes, and baseline exposure segments had 
not been built. In addition, a small trip summary file con-
taining key features of each trip had not been built. Users 
can conduct initial analyses on many subjects quickly and 
easily using a trip summary file.

•	 Other demands on data file managers. The first priority for 
the NDS manager, Virginia Tech Transportation Institute 
(VTTI), and the RID manager, Iowa State University’s Cen-
ter for Transportation Research and Education (CTRE), 
was to complete data processing and quality control. Field 
data were being ingested continually. Data delivery for users 
sometimes was delayed due to these demands on their 
resources.

These issues are being resolved in 2014. The NDS and RID 
data are complete and are being linked. Data processing and 
quality control are being completed. Crash and near-crash 
files and trip summary files are being built. If this project and 
the other two were to begin in 2015, each would have more 
data and would obtain the data far more easily and quickly. 
Readers should keep these constraints in mind as they read 
this report. Despite working under these constraints, this 
project and the other two NDS projects have produced valu-
able new insights on important traffic safety issues that will 
help reduce traffic crashes and injuries.

this study is one, successfully completed this proof-of-concept 
phase and were selected for the full Phase 2. These three proj-
ects obtained and analyzed a much richer, though still pre-
liminary, data set and reported their results in July 2014.

Constraints of the First  
SHRP 2 NDS Studies

These projects were conducted while the NDS and RID data 
files were being built. This circumstance imposed constraints 
that substantially affected the researchers’ work. The con-
straints included the following:

•	 Sample size. In summer 2013, when the projects requested 
their full data sets, the NDS data file was only 20% to 30% 
complete. As a result, each project could obtain only a frac-
tion of the trips of interest now available in the full NDS data.

•	 RID not complete and not linked to the NDS. Projects based 
on roads of specific types or locations could not identify 
those roads from the RID but instead had to use Google 
Earth or some similar database to identify them. Researchers 
then obtained trips of interest using less efficient searches 
through the NDS than will be possible when the NDS and 
RID are linked.

•	 Data processing. Some data, such as radar, had not been 
processed from their raw state to a form where they were 
fully ready for analysis.

•	 Data quality. NDS data are field data, and field data are inher-
ently somewhat messy. When these projects obtained their 
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C h a p t e r  2

Background

The Federal Highway Administration (2009) estimates that 
58% of roadway fatalities are roadway departures, while 40% 
of fatalities are single-vehicle run-off-road (SVROR) crashes. 
Addressing roadway departure crashes is therefore a priority 
for national, state, and local roadway agencies; horizontal 
curves are of particular interest because they have been cor-
related with overall increased crash occurrence. Glennon 
et al. (1985) reported that curves have approximately three 
times the crash rate of tangent sections, and Preston (2009) 
reported that 25% to 50% of severe road departure crashes in 
Minnesota occurred on curves, even though they account for 
only 10% of the system mileage. Farmer and Lund (2002) 
found that the odds of having a rollover on a curved section 
were 1.42 to 2.15 times greater than the odds of having a roll-
over on a straight section. The majority of crashes on curves 
involve roadway departures. A total of 76% of curve-related 
fatal crashes are single vehicles leaving the roadway and strik-
ing a fixed object or overturning. Another 11% of curve-
related crashes are head-on collisions (AASHTO 2008).

Curve-related crashes have a number of causes, including 
roadway and driver factors. Degree of curve or radius of curve 
is the roadway factor most cited in the literature as having an 
impact on crash risk (Luediger et al. 1988; Miaou and Lum 
1993). Other factors that have been correlated to the frequency 
and severity of curve-related crashes include length of curve, 
type of curve transition, lane and shoulder widths (Zegeer 
et al. 1991), preceding tangent length (Milton and Mannering 
1998), presence of spirals (Council 1998), grade (Fink and 
Krammes 1995), and required speed reduction between the 
tangent and curve.

Driver error on horizontal curves is often due to inappro-
priate speed selection, which results in an inability to main-
tain lane position. FHWA estimates that approximately 56% 
of run-off-road (ROR) fatal crashes on curves are speed 
related. Distracting tasks such as radio tuning or cell phone 

conversations can draw a driver’s attention away from speed 
monitoring, changes in roadway direction, lane keeping, and 
detection of potential hazards (Charlton 2007). Other factors 
include sight distance issues, fatigue, or complexity of the 
driving situation (Charlton and DePont 2007; Charlton 2007). 
McLaughlin et al. (2009) evaluated ROR events in VTTI’s 100-
car naturalistic driving study and found that distraction was 
the most frequently identified contributing factor, along with 
fatigue, impairment, and maneuvering errors.

Environmental factors, such as the roadway surface condi-
tion, and vehicle factors, such as the center of gravity, also 
have an impact on a driver’s ability to safely negotiate a curve. 
McLaughlin et al. (2009) found that ROR events were 1.8 times 
more likely on wet roads than dry, 7.0 times more likely on 
roads with snow or ice than dry roads, and 2.5 times more 
likely in nighttime than daytime conditions.

Studies of roadway factors—such as degree of curve, pres-
ence of spirals, or shoulder width and type—have provided 
some information regarding which curve characteristics are 
the most relevant, but information is still lacking. In addition, 
little information is available that identifies driver behaviors 
that contribute to curve crashes. As a result, a better under-
standing of how drivers interact with various roadway fea-
tures and countermeasures will provide valuable information 
to highway agencies in determining how resources can best be 
allocated to maximize driver performance and reduce crashes.

rationale for research

Although some studies have assessed the relationship between 
crash risk and driver and roadway characteristics, the con-
tributory factors have not been well established. This is pri-
marily because crash data typically have only a limited number 
of roadway variables, and driver behavior leading up to a crash 
can only be inferred by the reporting police officer.

This lack of understanding makes it difficult to design, 
select, and apply the appropriate countermeasures, given that 

Introduction
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safety professionals do not really understand how drivers are 
failing to interact with the roadway. Most studies that have 
evaluated countermeasures are based on crash or speed 
reductions. The results of these studies only demonstrate that 
a countermeasure works or does not work. They do not 
explain why the countermeasure works. For instance, several 
studies have examined the use of wider pavement markings 
or raised pavement markings (Donnell et al. 2006) to reduce 
crashes in curves. Although the treatments have shown some 
promise, why they are effective is not well understood. The 
treatment may be successful for several reasons: (1) the treat-
ment provides better delineation so that a driver is better able 
to judge the sharpness of the curve; (2) the treatment may 
simply get the driver’s attention; or (3) the treatment may 
cause the lane to appear narrower, causing the driver to feel 
more constrained and resulting in lower speeds. Because it is 
unclear why the treatment is effective, it is unclear whether 
applying a particular countermeasure at a different curve will 
also be effective, and the understanding of the problem is 
insufficient to support the design and selection of alternative 
treatments.

A better understanding of the interaction between driver 
characteristics and curve negotiation needs can lead to better 
design and application of countermeasures. For instance, if 
older drivers have the hardest time with curve negotiation 
because they are less likely to see visual cues, the best solution 
might be larger chevrons. Conversely, a solution geared toward 
younger drivers might include more closely spaced chevrons 
to help drivers gauge the sharpness of the curve. Distracted 
drivers might require another solution, such as a tactile cue 
from transverse rumble strips.

Objectives

Rural curves pose a significant safety problem, and the inter-
action between the driver and roadway environment is not 
well understood. To address this knowledge gap, this research 
aimed to assess the relationship between driver characteris-
tics and behavior, roadway factors, environmental factors, 
and the likelihood of roadway departures on rural two-lane 
paved curves.

To accomplish this objective, the second Strategic Highway 
Research Program (SHRP 2) Naturalistic Driving Study (NDS) 
and Roadway Information Database (RID) were used to 
develop models that explore how drivers interact with the 
roadway environment and that identify the conditions pres-
ent both when a driver does not successfully negotiate a rural 
curve and when successful negotiation occurs. These condi-
tions include driver, roadway, and, to limited extent, environ-
mental conditions.

Most highway agencies are proactive in implementing a 
range of countermeasures to reduce roadway departures on 

curves and in other areas. However, agencies have only limited 
information about the effectiveness of different counter-
measures. The results of this research will provide more infor-
mation about the specific roadway features that are correlated 
to increased risk of roadway departure. The results will also 
provide valuable information about how drivers interact with 
roadway features and the impact that that interaction has on 
the effectiveness of countermeasures. This information will 
allow agencies to make better decisions about countermeasure 
selection.

This research focused on two-lane rural curves. Addressing 
roadway departures on all curves is important; however, the 
SHRP 2 NDS encompassed almost 5 million trips, and—given 
time and resources constraints—researchers could not con-
sider all curve-related roadway departure scenarios. Rural 
two-lane roads were prioritized and selected because of the 
disproportionate number of roadway departure crashes expe-
rienced on these roads (Garder 2006; Fitzpatrick et al. 2002).

Only paved roadways were included because the machine 
vision application does not function well when lane lines or 
obvious discontinuities between the lane and shoulder sur-
face are not present. Rural was defined as one or more miles 
outside an urban area. Additionally, only roadways posted at 
64 km/h to 97 km/h (40 mph to 60 mph) were included.

research Questions addressed

This main research question addressed was the following: 
What is the relationship between driver distraction, other 
driver characteristics, roadway characteristics, environmental 
characteristics, and risk of roadway departure?

The data that were obtained and reduced allowed research-
ers to explore driver behavior on curves in several additional 
ways. Each way offers a different perspective, and each was 
posed as an individual research question. As a result, a differ-
ent methodology was proposed for each, as described in the 
corresponding sections.

This research was tailored to address four fundamental 
research questions:

1. What defines the curve area of influence?
2. What defines normal behavior on curves?
3. What is the relationship between driver distraction; other 

driver, roadway, and environmental characteristics; and 
risk of roadway departure?

4. Can lane position at a particular state be predicted as a 
function of position in a prior state?

As described in Chapter 4, distraction for the purposes of this 
research was defined as engagement in a non-driving-related 
activity while the driver was glancing in a location other than 
the forward roadway, or “eyes-off-roadway.”
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C h a p t e r  3

This chapter describes the process for obtaining and reducing 
the different NDS data sets used in the present analysis. A 
further description of the data reduction effort for each spe-
cific analysis is included within each corresponding section.

Identification of Data Needs

Before requesting data, the research team identified the desired 
driver, roadway, and vehicle characteristics necessary to 
answer the stated research questions. To accomplish this, the 
team conducted a number of literature reviews regarding fac-
tors related to rural roadway departures and researched the 
impact of various countermeasures. This information and the 
team’s expertise were used to develop a list of roadway, driver, 
and environmental data elements necessary to answer the 
stated research questions. An in-depth summary can be found 
in Hallmark et al. (2011). In addition, the team completed an 
assessment of the SHRP 2 NDS and RID data to determine the 
likely sources of data and the accuracy of that data. This list of 
desired data elements was used to guide the data requests, 
which are described in the following section.

Data requests

New Institutional Review Board (IRB) and data-sharing agree-
ments were necessary to initiate data requests. Both the Center 
for Transportation Research and Education at Iowa State Uni-
versity (CTRE/ISU) and University of Iowa (UI) teams obtained 
the appropriate IRB approval from their respective home insti-
tutions and then submitted data-sharing agreements to the 
Virginia Tech Transportation Institute (VTTI).

Both the NDS and RID data were still being collected at the 
time this analysis was being conducted. In addition, the NDS 
and RID data had not yet been linked at the time the data 
requests were initiated. As a result, it was necessary for the 
CTRE/ISU team to manually identify potential curves of 
interest using the method described below.

The team focused on Florida (FL) for Phase 1 because NDS 
and roadway data collection were the most advanced in that 
area at the time Phase 1 commenced. Phase 2 included North 
Carolina (NC), Indiana (IN), New York (NY), and Pennsylva-
nia (PA) because those states had the greatest share of rural 
roadway data. Table 3.1 provides a summary of the data that 
were ultimately collected for the RID by state.

To identify potential curves of interest, the project team 
made use of weighted section maps that VTTI prepared dur-
ing the early stages of the NDS data collection to help the team 
working on SHRP 2 Safety Project S04A, Roadway Informa-
tion Database Development, to focus mobile mapping on 
roadway sections where NDS trips were occurring.

A data-sharing agreement and data request were made so 
that the weighted section maps could be used to identify 
curves of interest. The team manually reviewed the weighted 
section maps and the RID and identified segments of rural 
two-lane paved roadways with curves. Rural was defined as 
approximately 1 mile from an urban or built-up area. A seg-
ment consisted of a continuous stretch of roadway with no 
major changes in roadway cross section. Each segment 
included one or more curves. Each segment also included a 
tangent distance of at least 0.5 miles upstream or down-
stream of the first or last curve included in the respective 
segment.

A buffer was created around each segment so that trips 
through the segment could be identified by VTTI. A buffer 
was used so that vehicle activity passing along the correspond-
ing roadway section could be “clipped” out using GIS overlay 
functions. Trips through a buffer are referred to in this report 
as traces because the term trip is used in the NDS to indicate 
a journey from origin to destination. Traces are thus portions 
of a trip. An example of a buffer section and corresponding 
traces is shown in Figure 3.1.

Identified segments were evaluated and were removed from 
further consideration when they included turning or passing 
lanes in the curve, stop or signal controlled intersections, or a 

Data Collection
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significant portion in which the surrounding area appeared to 
be more urban than rural. Fourteen buffers and 32 curves 
were identified in Florida in Phase 1, and the remaining were 
identified in Phase 2. A total of 217 buffers and 739 curves 
were identified, as shown in Table 3.2.

Segment locations identified for Phases 1 and 2 (Florida, 
New York, Pennsylvania, North Carolina, and Indiana) are 
shown in Figure 3.2.

A sampling plan was developed after initial analyses in 
Phase 1, and a total request for about 1,000 traces was planned 
for Phase 2. This request was based on an estimate of an ideal 
sample size for the statistical methods identified for the 
research questions and was balanced against what the CTRE/
ISU and UI teams could reasonably accomplish in Phase 2. 
The resources needed for VTTI to complete the request were 
also considered in selection of the sampling size.

Data were requested in three phases, as described in the 
following sections. Each trace represents one trip through 
one buffer segment by one driver. Only data for which the 

driver traversed the entire segment were requested because 
the driver may have turned onto or off of the segment.

VTTI typically first provided a data file with output from 
the in-vehicle data acquisition system (DAS) along with static 
driver/vehicle characteristics such as age, gender, and vehicle 
type. The CTRE/ISU team reviewed the raw DAS file to deter-
mine whether sufficient data were available for variables of 
interest; VTTI then provided a video with a forward and rear 
view of the roadway only for these traces. The data elements 
to be provided were specified in the data request.

Driver face and steering wheel position/hand position vid-
eos were viewed and reduced by the team at the VTTI secure 
data enclave, as described in Chapter 4.

Information such as vehicle speed, acceleration, pedal posi-
tion, and wiper blade position were provided in the data file. 
Additional information about available variables is provided 
in Chapter 4, but an example of a raw data file is shown in 
Table 3.3. Data were provided at 10 Hz (0.1 s intervals). GPS 
location was also provided so that the data could be imported 
into a geographic information system (GIS) program and 
overlaid with the RID and aerial imagery. These data are 
referred to as time series DAS data. Video and time series data 
are linked using timestamps.

An example of the video views available is shown in Fig-
ure 3.3. The forward and rear roadway video views were pro-
vided along with the time series data and could be viewed 
in-house. The driver face and steering wheel/hand position 
videos could only be viewed at the VTTI secure data enclave. 
A still cabin view was also available at the enclave, which 
showed a blurred view of the cabin that could be used to indi-
cate passengers.

Data Request 1 (Phase 1)

The first data request was in Phase 1 and was made in the 
initial stages of the NDS and RID data collection. Only Flor-
ida was included in this request because collection of NDS 
and RID data was the most advanced in Florida at that time. 
Using the trip maps provided by VTTI, 50 rural two-lane curves 

Table 3.1. Rural/Urban Split for RID Data Collection 
by State

Study State Miles Collected for RID Rural/Urban Split

FL 4,366 45% rural/55% urban

IN 4,635 64% rural/36% urban

NC 4,558 59% rural/41% urban

NY 3,570 68% rural/32% urban

PA 3,670 83% rural/17% urban

WA 4,277 31% rural/69% urban

Table 3.2. Location of 
Buffer Segments

Study State Buffers Curves

IN 80 375

NY 71 173

NC 20 58

PA 32 101

FL 14 32

Total 217 739

Source: World_Imagery (Esri, DigitalGlobe, GeoEye, i-cubed, USDA, USGS AEX,
Getmapping, Aerogrid, IGN, IGP, swisstopo, and the GIS User Community). 

Figure 3.1. Example of traces through buffer  
segment.
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Florida New York

Pennsylvania North Carolina 

Indiana 
Source: World_Topo_Map (Esri, HERE, DeLorme, TomTom, Intermap, Increment P Corp., GEBCO, USGS, FAO, NPS, NRCAN,
GeoBase, IGN, Kadaster NL, Ordnance Survey, Esri Japan, METI, Esri China [Hong Kong], swisstopo, MapmyIndia,
© OpenStreetMap contributors, and the GIS User Community).    

Figure 3.2. Location of identified segments by study state.
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in Florida were identified. Buffers representing geographic 
boundaries around each curve were developed and submitted 
to VTTI. After the initial data request was made (May 2012), 
it was determined that data were only available for eight buf-
fer sections in Florida, which resulted in data for 14 curves 
because some buffers contain more than one curve.

The team requested that all vehicle activity through each 
identified buffer area be provided. The specific data elements 
from the DAS were included in the data request. The team 
worked with VTTI via e-mail and phone to refine the data 
request. Members from the CTRE/ISU and UI teams also vis-
ited the secure data enclave in Blacksburg, Virginia, in May 
2012. This visit provided the opportunity to actually see the 
data and get a sense of the quality of data. This was particu-
larly important for the UI team, whose members would later 
make a second visit to reduce data from driver videos.

The team received almost 400 traces. Traces were imported 
into a GIS program and reviewed, and some were removed 
from the data set because of the following issues:

•	 Potentially identifiable data were present.
•	 Drivers turned onto or off the roadway of interest within 

the curve.
•	 Construction zones were present.
•	 Traffic control was present within the curve (not identified 

earlier).
•	 Lane position was not available or was highly unreliable.
•	 Forward or face video data were missing (indicated by 

VTTI).Figure 3.3. Example of video views.

Source: VTTI.

Table 3.3. Raw Data Output

System.
Time vtti.accel_x vtti.accel_y vtti.accel_z

vtti.pedal_
gas_position vtti.gyro_y vtti.gyro_x vtti.wiper vtti.gyro_z speed

205 0.0116 -0.0087 -1.0063 12.54902 0 -0.3252 -0.3252 23.33335

206 0.0174 -0.0174 -0.9976 12.54902 0 -0.3252 -0.3252 23.33335

207 0.0203 -0.0058 -0.9947 12.54902 -0.3252 0 -0.3252 23.33335

208 0.0319 -0.0174 -1.0092 12.54902 0.325195 0 -0.3252 23.05557

209 0.0029 -0.0174 -0.9976 12.54902 0 -0.3252 -0.3252 22.7778

210 0.0261 -0.0029 -0.9918 12.54902 0 -0.65039 0 22.7778

211 0.0145 0.0029 -0.9947 12.54902 22.7778

212 0.0058 0.0029 -0.9976 12.81046 0 0 0 22.7778

213 0.0203 -0.0232 -0.9715 13.46406 -0.65039 0 -0.3252 22.7778

214 0.0029 -0.0232 -0.9831 13.92157 0 0 0 22.7778

215 0.0145 -0.0116 -0.9831 14.31373 0 0 -0.3252 22.7778

216 0.0145 -0.029 -1.0034 15.09804 0 -0.65039 -0.3252 22.7778

217 0.0232 -0.0203 -1.0005 15.55556 0.650391 -0.65039 -0.3252 22.7778

218 0.029 -0.0145 -0.9802 16.33987 -0.65039 0 -0.3252 22.7778

219 0.0174 -0.0116 -0.9715 16.60131 -0.97559 0 -0.3252 22.7778

220 0.0058 -0.0261 -1.0034 16.86275 0 0 -0.65039 22.7778

221 0.0261 -0.0261 -1.0063 17.12419 22.7778

222 0.0145 -0.0116 -1.0295 17.25491 0.650391 -0.3252 -0.65039 22.7778

223 0.0348 -0.0116 -0.9947 17.25491 0 0 -0.3252 22.7778

224 0.0377 -0.0232 -0.9686 17.25491 -0.65039 0 -0.3252 22.7778
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After removing traces with problematic data, a total of 137 
initial usable traces through the various curves were identi-
fied. Researchers realized that requesting one forward road-
way view for each segment would have allowed the team to 
identify locations where roadway conditions had changed or 
construction was present. This detail would have better 
guided the data request and was used in Phase 2.

Data Request 2 (Phase 2)

After data were collected and reduced for Phase 1, the data 
requests were refined. A sampling plan was developed based on 
the expected number of samples necessary for the statistical 
analyses, the time and resources available to reduce the data, 
and the ability of VTTI to provide the data in a timely manner 
given that the NDS data collection was concurrent with this 
research effort. Reduction of the driver face video at the VTTI 
secure data enclave was expected to be the limiting factor. It was 
originally estimated that about 1,000 traces could be reduced.

Given that this research project was one of the first applica-
tions of the NDS data, and based on the experience with the 
data in Phase 1, it was expected that unknown issues were 
likely to arise that would alter the sampling plan. As a result, 
two data requests to VTTI were planned for Phase 2. The first 
(Data Request 2) was for about 200 traces. The goal was to 
reduce these data, identify additional issues, and then use this 
information to make a more targeted final data request of 
about 800 traces (Data Request 3).

The 203 buffer segments identified for Phase 2 were pro-
vided in ArcGIS shape files and were provided to VTTI. When 
the second data request was completed (early November 
2013) only 10% to 15% of the available NDS data was pro-
cessed. Trips were found for about 80 of the buffers in this data 
request. One forward-view video for each of the 80 buffers was 
provided and reviewed by the CTRE/ISU team. Review of a 
single forward view for a roadway segment provided infor-
mation such as presence of construction or other changes not 
evident in the RID or Google View. Issues were found with 
four buffers, and they were removed. VTTI identified about 
1,455 traces across the remaining 76 buffers.

The CTRE/ISU team then worked with VTTI to set criteria 
for selection of about 200 of these traces for the second data 
request. The criteria are summarized in the following general 
terms:

•	 Step 1. Exclude traces in which the driver does not traverse 
at least 75% of buffer. In some cases, the driver turns onto 
or off the selected segment; these instances do not consti-
tute through trips.

•	 Step 2. Exclude traces in which speed or lateral position 
were problematic or not working or in which GPS appears 
problematic.

•	 Step 3. Excluding traces identified in Step 1 or 2, select traces 
in which the following conditions are met:
44 Side or forward acceleration ≥0.3 g;
44 Speed ≥100 km/h (68 mph);
44 A crash/near crash had occurred; and
44 High alcohol readings were present.

The intention of this step was to identify locations where a 
potential roadway departure had occurred or where other 
driver behaviors of interest were present.

•	 Step 4. From the remaining traces, select traces to balance 
age and gender for a total of 200 traces. When possible, 
include traces in which pedal position and steering wheel 
position are identifiable (both variables are used to deter-
mine when a driver reacts to the curve).

The VTTI and the CTRE/ISU and UI teams communicated 
back and forth to set filters for the above conditions. However, 
there was no easy method to identify when offset was not reli-
able. Unless only null values are present, it is not a simple task 
to determine that the lane-tracking system is not functioning 
properly or is producing erroneous data. The DAS does pro-
vide a variable for the probability that the lane-tracking sys-
tem is correctly interpreting right- or left-side lane markings. 
However, no guidance is currently available regarding when 
the probability is low enough that the data should be dis-
carded (e.g., probability ranges from 0 to 1,024, with higher 
values indicating better probability). As a result, it was difficult 
to know at what point to set the threshold. A threshold of 500 
was set in Phase 1 to indicate reliable versus unreliable data 
and was refined to 512 in consultation with VTTI for Phase 2. 
Similar problems were present in determining when data such 
as speed or acceleration were valid.

Due to resource constraints, it was difficult for VTTI to 
check the data to determine how to better set filters and iden-
tify traces in which key output such as speed or offset were not 
available or reliable. It was decided that the most expeditious 
way to get data was for VTTI to provide the CTRE/ISU team 
with a data file for each of the 1,455 traces. Each spreadsheet 
contained DAS data such as position, offset, speed, and accel-
eration. The CTRE/ISU team reviewed all of the data and 
selected 200 traces for the second data request. Once the 200 
traces of interest were identified, VTTI provided the forward 
and rear roadway videos.

Data Request 3 (Phase 2)

The team intended to use steering wheel position to indicate 
drowsy driving and to identify the point at which drivers 
began reacting to the curve. The research team also intended 
to ensure a subset of impaired drivers indicated by the alcohol 
sensor. However, steering wheel position data was much less 
available than expected because this variable could not be 
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downloaded by the DAS in certain types of vehicles. Signifi-
cant noise was also present in the alcohol measure, and it was 
not certain whether potentially alcohol-impaired drivers 
could be identified. As a result, presence of alcohol was not 
used as a filtering criterion. In addition, it was decided not to 
bias the sample toward vehicles for which steering wheel posi-
tion data were available, because that might have resulted in 
oversampling of certain vehicle types.

By mid-March 2014, about one-third of the NDS data had 
been processed. VTTI queried the processed data using the 
provided buffers and identified an additional 2,647 traces. It 
was again determined that the most expeditious way to move 
the data request forward was for the CTRE/ISU team to 
review all of the available data and select a subset of about 800 
traces. A Microsoft Excel macro was developed that summa-
rized speed, lane position probability, side acceleration, and 
forward acceleration for each of the traces.

One forward-view video was also requested for each seg-
ment so that any unusual situations such as construction or 
recent changes to the roadway could be identified and those 
segments excluded.

Traces meeting the exclusion criteria in Step 1 or Step 2 were 
identified and removed from further consideration. About 60 
of the viable traces met the criteria for side acceleration, for-
ward acceleration, or speed in Step 3 and were selected.

The remaining viable traces were sorted into a matrix by 
curve and driver characteristics. An additional 720 traces were 
selected to balance curve and drivers characteristics, resulting 
in a total of 787 traces. VTTI provided the forward and rear 
roadway view for these traces. During later processing some 
additional issues were identified with the data files, resulting 
in some additional attrition.

Summary of Data received  
and Limitations

Three separate data requests were made, as described in the 
previous section. About 137 traces were identified and reduced 
for Phase 1. In Phase 2, about 900 additional traces were deter-
mined to be viable after data screening and quality assurance 
were conducted, as described in the previous section. The data 
sets provided in-house for each trace included the following:

•	 One Excel file with GPS location and vehicle kinematic data;
•	 One forward video; and
•	 One rear video.

A total of 739 curves were initially identified and supplied 
in the full data request. Data were available for some curves, 
but trips did not traverse the entire segment. Additionally, 
only about one-third of the full NDS data set was available for 
query at the time the final data request was made. As a result, 

data were only available for 148 curves, which limited the 
number of curve characteristics that could be represented.

Although a large number of potential trips were ultimately 
available during Phase 2, there were a number of issues with 
the data (as is expected with this type of data collection). As a 
result, only a subset of traces was viable. The following issues 
with the some of the time series data were encountered:

•	 Missing values. In these cases, data such as speed are missing 
for all or portions of the trace.

•	 Repeat values. In these cases, the same value is repeated over 
multiple rows. This error is easy to identify because even 
travel at constant speed will produce minor fluctuations in 
values from row to row.

•	 Erroneous values. Values are reported incorrectly. This is usu-
ally evidenced by unusually high or low values. For instance, 
lateral acceleration is >0.3 g for 30 rows.

•	 Irregularly reported values. In most cases, variables such 
as speed, acceleration, lane offset, and pedal position are 
reported or averaged at 0.1-s intervals. In a number of cases, 
values were missing for a number of rows (e.g., reported 
every eighth interval). If the values are correct but less fre-
quent, they can still be used in event-level analyses, but 
they are problematic when time series data are needed.

•	 Data not available for all vehicles. Because the DAS inter-
faces with the vehicle computer, some data, such as steering 
wheel position, could not be downloaded from all vehicles. 
Steering wheel reversal can be used to indicate traces in 
which drivers may have been drowsy and to indicate at 
what point a driver began reacting to the curve, but this 
information was only available for a fraction of vehicles.

•	 Sensor accuracy unknown. The accuracy of the head pose, 
lane offset, and alcohol sensor data had not been reported 
at the time data requests were made. Some indication of 
lane offset accuracy could be determined using lane line 
probability, plotting the data, and reviewing the forward 
view. Head pose could not be confirmed, and there was 
some indication that the alcohol sensor was not reporting 
consistently. As a result, neither the head pose nor alcohol 
data were included in any of the analyses.

Issues with the various video views include the following:

•	 Views are blurry due to glare and other factors.
•	 Views are missing.
•	 The driver’s face or eyes cannot be seen because of glare, 

sunglasses, or other reasons.

Many of the variables were critical to the analyses, so it was 
important to screen out problem traces. Several attempts 
were made to set filters with VTTI so that problematic data 
were not included. However, as explained in the description 
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of data requests, the filtering process could not be fine-tuned 
as much as needed, so the CTRE/ISU team ended up review-
ing a large number of traces that ultimately were not viable. 
This problem will likely have been addressed by the time final 
data quality assurance has been conducted by VTTI.

In some cases, a trace could be used for one research ques-
tion but not others because necessary data were missing. For 
instance, pedal position was irregularly reported or missing in 

a number of traces. Consistent values were needed for Research 
Questions 1, 2, and 4 but not for Research Question 3. Research 
Questions 2 and 4 required consistent, accurate lane-tracking 
information, which further reduced the available traces. As a 
result, more traces were available for Research Question 3 than 
for the other research questions.

The data request and reduction process is shown in 
Figure 3.4.

Figure 3.4. Data request and reduction process.

•Received 4,102 raw traces. Evaluated key variables.

•Removed traces when key variables not functioning.
•Developed comparison matrix by driver age/gender and curve characteristics.

•Identified traces of interest (123 total).
•acceleration ≥ 0.3 g.
•speed ≥ 100 km/h.

•Requested forward view for traces of interest (123), and an additional 864 traces 
selected to balance driver/roadway characteristics.

•Driver/glance location reduced for 515 traces.
•Due to reliability of data, not all traces were used for all research questions.
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C h a p t e r  4

This chapter describes how roadway, driver, and environ-
mental data were reduced. Some additional data reduction 
may have been conducted for a specific research question 
and is described in the corresponding data section for that 
research question.

reduction of roadway 
Variables

Roadway variables were extracted for all of the curves identi-
fied for the data request, as described in Chapter 3, even 
though some curves ultimately did not have trips. The RID 
data collected as part of SHRP 2 Safety Project S04A was used 
to extract roadway variables when available. In some cases a 
variable was not collected, and in other cases the RID was not 
available for the study segment because the RID only covered 
a portion of the area where trips actually occurred. When the 
information was not available through the RID, other sources 
were used to manually extract the data. These additional sources 
were also used to confirm data collected through the RID, 
such as speed limit and advisory speed limit.

ArcGIS was used to measure distances between curves using 
the points of curvature included in the RID. ArcGIS was also 
used to determine whether the curve was an S-curve or a com-
pound curve based on the distance between curves.

Google Earth was used to extract the roadway features not 
included in the RID. For instance, chevron presence was 
available for some of the states in the RID and was manually 
collected for those in which it was not. Radius was provided 
for most curves in the RID and was reported as radius by lane. 
When RID data were not available, radius was measured using 
aerial imagery. NDS forward video was used to determine 
subject measures for delineation, pavement condition, road-
way lighting, and roadway furniture (which describes objects 
around the road that provide some measure of clutter), as 
well as a measure of sight distance for each curve. Variables 
collected are shown in Table 4.1.

The methodology for reducing roadway data is provided in 
Appendix A.

Given that the impact of countermeasures on roadway 
departure risk was a focus of this research, curves were selected 
to represent the widest range of countermeasures possible. 
Curve geometry is also highly relevant to roadway departure 
risk. Table 4.2 summarizes the number of curves with the 
indicated radius and countermeasures present.

reduction of Vehicle, traffic, 
and environmental Variables

Each of the traces represents one driver trip through a selected 
roadway segment. One spreadsheet (containing DAS data), 
one forward video, and one rear-view video were provided 
by VTTI for each trace. Each row of data represents 0.1 s, and 
spatial location was provided at 1-s intervals. Several other 
variables reported at 1-s intervals include use of cruise con-
trol, air-bag deployment, date, and heading. A timestamp 
was also provided to link the various videos with the DAS 
data. A list of the main DAS variables provided includes the 
following:

•	 ABS activation
•	 Acceleration, x-axis
•	 Acceleration, y-axis
•	 Acceleration, z-axis
•	 Accelerator position
•	 Air bag, driver
•	 Alcohol
•	 Ambient light
•	 Cruise control
•	 De-identified date
•	 Dilution of precision, position
•	 Driver button flag
•	 Electronic stability control
•	 Elevation, GPS

Data Reduction
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Table 4.1. Roadway Variables Extracted and Main Source

Feature ArcGIS
SHRP 2 

RID
Google 
Earth

SHRP 2 NDS 
Forward Video

Curve radius 

Distance between curves 

Type of curve (isolated, S, compound) 

Superelevation 

Presence of rumble strips 

Presence of chevrons  

Presence of W1-6 signs 

Presence of paved shoulders 

Presence of RPM 

Presence of guardrail 

Speed limit 

Advisory sign speed limit  

Curve advisory sign/W1-6   

Pavement condition 

Delineation 

Roadway lighting 

Sight distance 

Roadway furniture 

Direction of curve 

Driveways along curve 

Driveways along upstream section 

Sight distance 

Table 4.2. Distribution of Curve Characteristics

<1000
1000 to 
<1500

1500 to 
<2000

2000 to 
<2500

2500 to 
<3000

3000 to 
<4000

4000 to 
<6000 6000+ Total

Radius 31 19 23 19 14 15 13 14 148

Chevrons 5 3 0 0 0 0 0 0 8

Some paved shoulder 23 18 22 14 9 15 13 13 127

Rumble strips 0 0 0 0 1 1 0 0 2

RPM 4 4 8 5 2 5 4 1 33

Markings obscured or not present 6 3 0 1 1 0 1 0 12

W1-6 4 3 2 0 0 0 0 0 9

Lighting 0 0 0 0 0 0 0 0 0

Guardrail 5 6 5 4 3 0 7 1 31

On-pavement curve signing Not present

Flashing beacons or dynamic speed signing Not present
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•	 Head confidence
•	 Head position x
•	 Head position y
•	 Head position z
•	 Headlight setting
•	 Lane marking, distance, left
•	 Lane marking, distance, right
•	 Lane marking, probability, left
•	 Lane marking, probability, right
•	 Lane marking, type, left
•	 Lane marking, type, right
•	 Lane position offset
•	 Lane width
•	 Pedal, brake
•	 Pitch rate, y-axis
•	 Radar range rate forward x
•	 Radar range rate forward y
•	 Roll rate, x-axis
•	 Seatbelt, driver
•	 Spatial position (lat/long)
•	 Speed, vehicle network
•	 Steering wheel position
•	 Time into trip
•	 Timestamp
•	 Wiper setting
•	 Yaw rate, z-axis

The static driver and vehicle characteristics available include 
the following:

•	 Driver
44 Driver age
44 Gender
44 Education level
44 Annual miles driven
44 Years of driving
44 Number of moving violations
44 Number of crashes

•	 Vehicle
44 Vehicle year
44 Vehicle model
44 Vehicle make
44 Vehicle track width

Smoothing

Vehicle variables were either available (i.e., acceleration, 
position, lane offset) or reduced (i.e., distance from right  
or left lane line) from DAS variables, which were provided 
at 10 Hz (one row = 0.1 s). A macro was developed that 
calculated lane position, change in pedal position, and change 

in steering position and that smoothed offset, lane posi-
tion, pedal position, side acceleration, forward acceleration, 
and speed.

Smoothing was necessary because a certain amount of noise 
in the data resulted in improbable data points. Several different 
methods to smooth the data were investigated. The Kalman fil-
ter estimates the optimum average factor for each subsequent 
state using information from past states. It was determined that, 
although the Kalman filter was appropriate, developing a model 
for five different variables for more than 1,000 vehicle traces was 
overly complicated and time consuming.

A moving average method was selected because it is able to 
reduce random noise while retaining a sharp step response. 
Each of the variables listed above was smoothed using a moving 
average method, as follows (Smith 2003):

1y i M x i j∑ [ ][ ] = +

where
 y[i] = the output signal;
 M = the number of points used in the moving average; and
 x = the input signal.

An example of smoothed versus original data is shown in 
Figure 4.1 for lane offset for a vehicle trace.

DAS Data Reduction

A macro was developed in Microsoft Excel to calculate addi-
tional columns in the DAS worksheets. They include the 
following:

•	 Spatial location in reference to each curve’s point of curva-
ture (PC) and point of tangency (PT) (e.g., 100 m upstream 
of the curve);

•	 Change in pedal position;
•	 Averaged pedal position (applied smoothing using a mov-

ing average method over five intervals);
•	 Forward acceleration (also calculated using the DAS 

accelerometer);
•	 Averaged forward acceleration (applied smoothing using a 

moving average method over five intervals);
•	 Change in steering wheel position (only available for a 

small portion of traces); and
•	 Averaged steering wheel position (applied smoothing using 

a moving average method over five intervals).

The macro also calculated distance from the right edge of 
the vehicle to the right edge line and distance from the left 
vehicle edge to the left lane line based on vehicle track width 
and offset.
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Information on the make, model, class, and track width of 
each vehicle was also linked using the subject ID. In addition, 
the subject ID was used to link the driver demographics, such 
as the following:

•	 Gender;
•	 Age;
•	 Education;
•	 Work status;
•	 Household income;
•	 Number of miles driven last year;
•	 Average annual mileage for the last 5 years;
•	 Experience (i.e., number of years driving);
•	 Number and type of moving violations in the last 3 years;
•	 Number and type of crashes within the last 3 years; and
•	 Auto insurance for at least 6 months.

Vehicles traces were overlaid with the RID. For each curve, 
the nearest GPS points to the PC or PT were found and the 
position of the PC/PT located within the time series data using 
interpolation. Once PC/PT was established, vehicle position 
upstream or downstream of the curve was accomplished using 
speed. For some traces, there were multiple curves, so the 
PC/PT and upstream/downstream distances were determined 
for each curve. In some cases, speed was missing for multiple 
timestamps. In these cases, speed was interpolated assuming a 
constant increase or decrease.

Extraction of Data from Forward View

The forward video was used to reduce the environmental and 
other variables. The variables collected included the following:

•	 Surface conditions (e.g., dry, wet, snow);
•	 Lighting conditions (i.e., day, dawn, dusk, night with no 

lighting, night with lighting);
•	 Visibility;
•	 Locations of vehicles in the opposite direction passing the 

driver’s vehicle;
•	 Locations where the driver’s vehicle was following another 

car;
•	 Locations of curve advisory signs and locations where first 

visible;
•	 Locations of chevrons and locations where first visible; and
•	 Locations of potential roadway departure.

reduction of Kinematic  
Driver Characteristics

Initially, three data collection trips were deemed sufficient to 
reduce 800 to 1,000 traces for Phase 2. However, because data 
collection trips at the secure data enclave were conducted at the 
same time VTTI was processing and conducting quality assur-
ance on the NDS data, some issues were present that slowed 
reduction of the kinematic data significantly. A fourth trip was 

Figure 4.1. Original versus lane offset smoothed using moving average method.
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made, but only 515 total traces could be coded. These included 
one crash and three near crashes. This was significantly less 
data than planned and limited the amount of data that could 
be used in the different analyses.

Hawkeye, the VTTI-developed video data reduction tool 
that allowed analysts to simultaneously observe multiple 
camera views and use preset key strokes to code driver char-
acteristics, was used to code data for this project.

Driver attention was measured by the location on which a 
driver was focused for each sampling interval. Scan position, 
or eye movement, has been used by several researchers to 
gather and process information about how drivers negotiate 
curves (Shinar et al. 1977). The majority of studies have used 
simulators to collect eye tracking information. Because eye 
tracking is not possible with NDS data, glance location was used 
as a proxy. Glance locations, shown in Figure 4.2, represent 
practical areas of glance locations for manual eyeglance data 
reduction. Note that Figure 4.2 does not show “over the shoul-
der,” “missing,” and “other” eyeglance locations. Those three 
locations were determined based on the UI team’s extensive 
eyeglance reduction experience. Glance locations were coded 
using the camera view of the driver’s face, with a focus on eye 
movements, but taking into consideration head tilt when 
necessary.

Potential distractions were determined by examining both 
the view of the driver’s face and the view over the driver’s right 
shoulder, which showed hands on/off the steering wheel. Dis-
tractions were identified when drivers took their eyes off the 
forward roadway. The coding process was developed by the UI 
team. They are experts in the field of human factors and have 

used similar methodologies in other NDS studies. Potential 
distractions include the following:

•	 Route planning (locating, viewing, or operating);
•	 Moving or dropped object in vehicle;
•	 Cell phone (locating, viewing, operating);
•	 IPod/MP3 (locating, viewing, operating);
•	 Personal hygiene;
•	 Passenger;
•	 Animal/insect in vehicle;
•	 In-vehicle controls;
•	 Drinking/eating; and
•	 Smoking.

Glance location and distractions were coded for each trace. 
The data reductionist indicated each time the glance location 
changed, and the data reduction tool recorded the timestamp. 
Similarly, the start and end times for distractions were also 
recorded. The data reduction method used to code driver 
glance location and distraction is provided in Appendix B.

Glance location and distractions were manually merged with 
the trace files using timestamp as a reference. Once this was 
completed, glance location was indicated for each row in the 
trace file. As a result, the time series analysis has glance location 
and distraction at the same resolution as the DAS variables.

A number of issues were noted during reduction of the 
driver face and steering wheel/hand position videos, based on 
the UI team’s experience in reducing other data sets:

•	 Bright sunlight caused the camera to “wash out” the entire 
face, especially at certain times of the day when the sunlight 

Figure 4.2. Glance locations.
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was more direct. External light sources at night, such as 
street lights, created the same effect.

•	 Night videos had a grainy quality, making it difficult to dis-
tinguish facial features and almost impossible to code eye 
glances. For a large portion of the files, it was not possible 
to code glances without the use of head movement. Coding 
was especially difficult for glances within the cabin that 
require little head movement (e.g., console, steering wheel).

•	 Many drivers wear sunglasses, which completely obscure 
the eye, or prescription glasses, which create problems 
associated with glare.

Traces were used unless it was not possible to code glance 
location or distraction. It should be noted that glance and dis-
traction were more likely to have been accurately coded for 
traces with clearer views of the face and eyes. However, discard-
ing data that had some issues would have entailed removing 
almost all nighttime data and significantly reducing sample size.

Glance location was further reduced to indicate time spent 
with “eyes-off-roadway” engaged in roadway-related tasks or 
eyes-off-roadway engaged in non-roadway-related tasks based 
on data coding used by Angell et al. (2006). The authors define 
roadway-related glances or situation awareness (SA) as glances 
to any mirror or speedometer. Glances to other locations are 
defined as not roadway-related (NR).

Roadway-related glances (SA) included left mirror, steer-
ing wheel, and rearview mirror.

The data reductionists could not distinguish between a 
glance to the right mirror and a glance to the right for other 
reasons (e.g., to converse with passenger). Additionally, on a 
two-lane roadway, glances to the right mirror are not likely to 
be as common because drivers are not expecting vehicles to 
the right. Consequently, all glances to the right were consid-
ered to be non-roadway-related.

Additionally, when glances to roadway-related locations 
were also associated with a distraction, it was decided that these 
glances were likely to be non-roadway-related. For instance, a 
driver who was texting and glancing at the steering wheel was 
likely to be looking at the cell phone rather than the speedom-
eter. As a result, non-roadway-related glances included center 
console, up, right, or down.

Data reductionists also indicated characteristics that applied 
to the trace in general, such as when the driver appeared to be 
drowsy or emotional. Weather conditions that add to the 
driving demand were also noted.

Summary of Data Limitations

About 1,000 traces were identified for Phases 1 and 2, and a 
data file with DAS variables, a forward-view video, and a rear-
view video were provided in-house. Roadway, environmental, 

and static driver characteristics were reduced or provided 
for all of the available traces. As noted in this chapter,  
key DAS variables were not present or reliable for some 
traces, so not all traces could be used for all of the research 
questions.

Initially, three data collection trips were deemed suffi-
cient to reduce 800 to 1,000 traces for Phase 2. However, 
because data collection trips to the secure data enclave were 
conducted at the same time VTTI was processing and con-
ducting quality assurance on the NDS data, some issues 
were present that slowed reduction of the kinematic data 
significantly. A fourth trip was made, but only 515 traces 
total could be coded, which limited the amount of data that 
could be used in any of the analyses. Consequently, the 
main limitation to this study was a smaller than expected 
sample size.

Another limitation was that some types of data were not 
available and could not be included. Surface friction and 
pavement edge drop-off are important factors in roadway 
departure crash risk, but neither could reasonably be col-
lected and were not available in the RID.

It would have been ideal to intentionally select a range of 
driver states, such as distraction or drowsiness, to ensure a 
reasonable sample of certain driver characteristics. However, 
there was no available method to detect whether driver dis-
tractions were present from the time series data so that traces 
with distraction could be preselected. Distraction could only 
be identified by viewing the driver face video, which was the 
last step in the data reduction process. Initially, the team iden-
tified a method to preselect traces in which drowsy driving 
may have occurred by using steering wheel reversals. How-
ever, steering wheel position data was only captured for a sub-
set of vehicles. As a result, it was not possible to identify drowsy 
driving using the time series data. The team did target drowsy 
driving by intentionally including nighttime driving when 
available. Nighttime conditions were present for 124 traces 
(~25%), and 36 traces were at dawn/dusk. Additionally, 
because the accuracy of the alcohol sensor was not known at 
the time data were collected, potential impairment could not 
be targeted.

Another limitation was that newer vehicle technologies 
could not be targeted. Vehicles with electronic stability con-
trol (ESC) or collision warning systems made up only a small 
fraction of the vehicle fleet. Because other factors had a higher 
priority, vehicles with advanced technologies were not spe-
cifically targeted.

Curve characteristics were described earlier in his chap-
ter. Other characteristics represented in the final available 
data set are described in Figures 4.3 and 4.4. The distribu-
tion of driver age and gender (n = 202) represented in the 
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viable traces is shown in Figure 4.3. A number of drivers had 
multiple trips.

Speeding was common, as indicated in Figure 4.4, which 
shows the percentage of drivers who entered the curve over 
the advisory speed limit if present or posted speed limit if not 
present by a certain threshold. Almost all drivers entered the 
curve 5 mph or more over the advisory speed, and a large 
fraction of drivers entered the curve 20 mph or more over the 
advisory speed. Data are summarized from the data reduced 
for Research Question 3 (sample size = 583).

A summary of the crash/near-crash events is provided in 
the sections below.

Summary of Crash 1

Event: 14950079
Driver: Male
Age: 21
Passengers: None
Location: WA

Figure 4.3. Distribution of driver age and gender.

Figure 4.4. Percentage of drivers exceeding advisory or posted 
speed limit.
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Month: August
Time of day: Midnight to 3:00 a.m.
Type of crash: Run-off-road
Description of site: This crash occurred on the second curve of 
an S-curve in rural Washington State. The driver was travel-
ing from east to west. The curve on which the ROR crash 
occurred had a radius of approximately 50 m, with a lane 
width of approximately 3 m and no shoulder. This curve had 
guardrail on the inside portion of the curve and did have 
chevrons. The curve also had a curve advisory sign and a 
curve advisory speed of 20 mph, a reduction from the 45 mph 
speed limit on the rest of the roadway.

Data on seatbelt usage, ESC activation, and the status of 
traction control and cruise control were missing from the 
DAS data, but from the driver video it was determined that 
the driver was wearing a seatbelt. From the driver face video, 
it appears that the driver may have been tired, as he is looking 
forward and resting his head on his right arm/hand.
Description of crash: The driver took the right-hand curve 
too fast, departed the lane to the left at 4082869, and 
departed the roadway at 4084070 after crossing over oppos-
ing lanes of travel. The impact was with the ditch, bushes, 
and trees along side of roadway. The driver appeared to be 
unhurt.
Suspected main contributing factor: Speed appears to be the 
main contributing factor. The driver entered the curve travel-
ing approximately 54 mph, 9 mph over the posted speed limit 
and 34 mph over the curve advisory speed limit. The only 
glance outside of a forward glance that occurred was a glance 
to the steering wheel, which lasted 0.6 seconds and occurred 
7.7 seconds before the driver left his lane. This glance was not 
associated with a distraction.

Summary of Near Crash 1

Event: 11543161
Age: 18
Gender: Female
Passengers: Three (one front, two rear)
Location: VA
Month: July
Time of day: Noon to 3:00 p.m.
Type of crash: Near rear-end
Description of site: This near crash occurred on the tangent 
downstream of a curve. The roadway had lanes approximately 
3.33 m wide, paved shoulders, centerline rumble strips, and 
raised pavement markings. The speed limit was 55 mph.

Data on seatbelt usage, ESC activation, and the status of 
traction control and cruise control were all missing from the 
DAS data. From the driver face video, it appears that the 
driver may have been tired, as she is looking forward and rest-
ing her head on her right arm/hand.

Description of near crash: The driver came up over a vertical 
curve while reaching to pick up a drink from the cup holder. 
The driver noticed that the vehicles ahead had come to a stop 
and had to brake hard to avoid a rear-end collision.
Suspected main contributing factor: The driver being distracted 
coupled with the presence of a vertical curve that limited sight 
distance appear to be the main contributing factors for this near 
crash. The driver was traveling under the 55 mph speed limit.

Summary of Near Crash 2

Event: 15483160
Age: 25
Gender: Female
Passengers: One front
Location: IN
Month: February
Time of day: 3:00 p.m. to 6:00 p.m.
Type of crash: Near rear-end
Description of site: This near crash occurred near the PC of a 
curve with a radius of 1,637 m. The speed limit on the road-
way is 50 mph, with lanes approximately 3.2 m wide. There 
are paved shoulders and a curve advisory sign alerting drivers 
to the curve.

Data on seatbelt usage, ESC activation, and the status of trac-
tion control and cruise control were all missing from the DAS 
data. The driver is talking to a passenger throughout the trip.
Description of near crash: The driver looked away and was 
operating in-vehicle controls when the vehicles ahead came 
to a stop. The driver swerved to the right shoulder to avoid a 
rear-end collision.
Suspected main contributing factor: The driver is talking to the 
passenger during most of the event and that appears to be the 
main contributing factor for this near crash. The driver is 
operating the in-vehicle controls while looking at the center 
console from 1297157 to 1298625. The brake lights of the 
vehicle ahead are visible at 1297290. The participant vehicle 
does not begin braking until 1.3 s later. The driver was travel-
ing at the 55 mph posted speed limit.

Summary of Near Crash 3

Event: 22512290
Age: 24
Gender: Male
Passengers: None
Location: NY
Month: August
Time of day: 3:00 p.m. to 6:00 p.m.
Type of crash: Near rear-end
Description of site: This near crash occurred near the PC of a 
curve with a radius of 570 m. The speed limit on the roadway 
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is 45 mph, with lanes approximately 3.5 m wide. There are 
paved shoulders and a curve advisory sign alerting drivers to 
the curve.

Data on seatbelt usage, ESC activation, and the status of 
traction control and cruise control were all missing from the 
DAS data. From the driver face video, it appears that the 
driver may have been tired, as he is looking forward and rest-
ing his head on his right arm/hand.
Description of near crash: The vehicle ahead applied its brakes 
at 392583. At this same time, the participant driver glanced at 

the center console. The driver braked hard to avoid hitting the 
vehicle ahead.
Suspected main contributing factor: The driver glancing away 
appears to be the main contributing factor to this near crash. 
The driver is looking at the center console from 391983 to 
392850. The driver ahead slams on his/her brakes starting at 
392583, so the participant driver does not notice the vehicle 
braking ahead for 0.3 seconds after the braking. The driver 
was only going about 1 mph over the speed limit of 45 mph, 
so speed did not appear to be a factor.
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C h a p t e r  5

The goal of SHRP 2 and stakeholders interested in the out-
comes of Project S08 research is understanding crashes, par-
ticularly severe and fatal crashes. For this reason, the best 
measure of analysis would be to study crash causes. However, 
even with the significant amount of data collected in the 
SHRP 2 NDS, crashes are rare events. At the time data requests 
were made, only one roadway departure crash and three near 
crashes had been identified. As a result, it was necessary to use 
crash surrogates for this project.

In addition, the use of crash data to address safety problems 
is a reactive approach, which is not able to take into account 
events that lead to successful outcomes. Consequently, the use 
of surrogates provides an opportunity to study what happens 
preceding and following an incident or event. For studying 
crash surrogates, the most significant advantage of naturalistic 
driving studies is that they provide a firsthand record of the 
events that precede crashes and incidents. Roadway, environ-
mental, vehicle, and human factors can be extracted directly 
rather than from secondhand information, such as police 
records and crash databases, to identify relationships among 
factors that influence roadway departure crash risk. This first-
hand information can also be used to determine the factors 
that lead to a positive outcome using crash surrogates.

The following sections discuss the rationale for selection of 
the identified crash surrogates.

Identification of possible 
roadway Departure  
Crash Surrogates

The team surveyed the literature on crash surrogates in gen-
eral and crash surrogates that have been used specifically for 
roadway departures. Time to collision (TTC), also referred to 
as time to accident or time to conflict, is one of the most com-
mon crash surrogates (Burgett and Gunderson 2001; Gettman 
and Head 2003; Chin et al. 1992). The concept is logical and 

provides a repeatable and easily understood metric to assess 
level of crash risk. Risk can be measured as a function of TTC, 
where, at TTC = 0, the subject vehicle and another vehicle/
object collide. This makes setting boundaries relatively 
straightforward.

However, to apply the concept of time to collision, the 
safety-critical event that results in a crash needs to be defined. 
For an intersection crash, this is a simple process because the 
safety-critical event is usually collision with another vehicle or 
pedestrian. The safety-critical event is not so easily defined for 
roadway departures because multiple crash outcomes could 
occur for a given roadway departure. For instance, the same 
roadway departure could result in a rollover or fixed object 
crash or, if the driver overcorrects, in the vehicle returning to 
the roadway and colliding with another vehicle. Because TTC 
depends on knowing the likely outcome, it is difficult to use 
TTC as a crash surrogate for roadway departures.

Use of TTC is also difficult because GPS data from the DAS 
are not accurate enough to locate the subject vehicle at a given 
point with sufficient precision to determine distances between 
objects. Initially, it was thought that calculation of TTC might 
be possible using distance from forward radar and the nearest 
strikable object. However, an initial review of the forward 
radar for several traces suggested that the radar output did 
not have sufficient detail to determine TTC with another 
vehicle or object. At the point data used in this study were 
obtained, the radar had not been processed. Once radar data 
have been processed, researchers may explore the possibility 
of using it for estimating time to collision.

Time to leaving the shoulder or distance intruded on the 
shoulder has been suggested as a measure of TTC (Dingus et al. 
2008). Unpaved shoulder width is not collected with mobile 
data collection, and other methods to measure unpaved shoul-
der width are not sufficiently accurate to estimate time to leav-
ing the shoulder. Distance intruded on the shoulder is related 
to lane deviation and will be included in this analysis, as 
described below.

Selection of Crash Surrogates
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Lane deviation is another measure used as a crash surro-
gate for both ROR crashes and crashes due to distraction 
(Donmez et al. 2006). Porter et al. (2004) used lateral place-
ment and speed to evaluate the effectiveness of centerline 
rumble strips. Miaou (2001) developed a method to estimate 
roadside encroachment frequency and the probability distri-
bution for the lateral extent of encroachments using an  
accident-based prediction model. Taylor et al. (2002) observed 
vehicle placement relative to the edge line using single versus 
double paint lines to delineate the presence of shoulder rumble 
strips. Hallmark et al. (2011) used lateral position to evaluate 
the effectiveness of edge line rumble stripes.

Description of Selected  
Crash Surrogates

The data necessary to identify each of the potential crash sur-
rogates mentioned above was considered against what was 
available in the actual NDS. As already described, TTC was 
not feasible because the available data were not of sufficient 
accuracy to determine the distance of the vehicle from the 
nearest hazard.

Lane position or amount of encroachment was another 
surrogate measure used by researchers and ideally would have 
been used to address the research questions. Lane deviation is 
provided as “offset” in the DAS data. A number of other lane 
position variables are reported by the DAS that can be used to 
calculate other metrics, such as distance from the left or right 
lane line.

These variables include the following (shown in Figure 5.1):

•	 O = offset (distance from the vehicle centerline to the lane 
center, in cm).

•	 W = lane width (distance between the inside edge of the 
innermost lane marking to the left and right of the vehicle 
centerline, in cm).

•	 LCL = distance from vehicle centerline to the inside of the left 
lane marking, in cm.

•	 RCL = distance from vehicle centerline to the inside of the 
right lane marking, in cm.

•	 LPR = probability that the lane marking evaluation is cor-
rect for the left-side lane line.

•	 RPR = probability that the lane marking evaluation is correct 
for the right-side lane line.

Offset from lane center and distance from the right lane 
(RD) or left lane (LD) line are the metrics currently being used 
as crash surrogates. RD and LD are calculated as shown in the 
following equations (in meters).

2
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R R T

D w

D w

= − −

= −

where
 LD =  distance from left edge of vehicle to left edge of lane 

line;
 RD =  distance from right edge of vehicle to right edge of 

lane line; and
 Tw = vehicle track width.

Use of offset or lane position was explored as the main 
crash surrogate of interest for Research Questions 2, 3, and 4. 
At the time data were reduced for this research project, the 
accuracy of the DAS lane-tracking system had not yet been 
established. There was also no method by which the CTRE/
ISU team could verify the accuracy of the reported offset and 
lane position values. As a result, these variables were examined 
for a number of traces, and several observations were made. 
First, there is a certain amount of noise in the various vari-
ables, as is to be expected from a large-scale data collection of 
this nature. As an example, lane position offset is shown in 
Figure 5.2 for one vehicle trace for a distance 300 m upstream 
and then through the curve. As noted, there is a significant 
amount of variation and several spikes that do not represent 
actual erratic changes in lane position. This was resolved in 
many cases by use of smoothing algorithms, as discussed in 
Chapter 4.

Second, the machine visioning algorithm depends on lane 
lines or differences in contrast between the roadway edge and 
shoulder to establish position. When discontinuities in lane 
lines occur, offset is reported with less accuracy (indicated as 
lane marking probability, which varies from 0 to 1,024, with 
higher values indicating better probability). Discontinuities 
occur for several reasons, such as lane lines being obscured, 

Figure 5.1. Description of lane position variables.
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natural breaks being present in lane lines (e.g., turn lanes, 
intersections), or visibility being compromised in the for-
ward roadway view. An attempt was made to set a threshold 
to indicate the probability of reliable versus unreliable data. A 
threshold of 512 was selected based on review of the data and 
consultations with VTTI regarding their assessment of the 
lane-tracking system.

Third, in a number of cases the lane tracker did not appear 
to be working sufficiently to be considered reliable, but other 
indicators, such as side acceleration, suggested that a roadway 
departure may have occurred. Consequently, it was not real-
istic to exclude traces in which the lane-tracking system was 
not working.

As a result of these issues, lane offset or position could not 
be reliably used as a crash surrogate for a large portion of the 
data. Research Question 3 required the largest sample size in 
order to include a large number of driver, roadway, and envi-
ronmental variables in the analyses. Logistic regression could 
also use binary dependent variables. As a result, it was deter-
mined that encroachments would be the best crash surrogate 
for Research Question 3.

A right-side encroachment is defined as the right vehicle edge 
crossing the right edge line (when present) or the estimated 
boundary between the lane and shoulder (when lane lines were 
not present). A left-side encroachment is defined as the left vehi-
cle crossing the centerline. In all cases, the centerline was visible. 

Figure 5.2. Offset in lane position.

An encroachment was determined to have occurred when two 
of the following criteria were present:

•	 Vehicle edge is 0.2 m beyond edge line/centerline/lane–
shoulder boundary.

•	 0.2 g lateral acceleration is present.
•	 Edge line/centerline/lane–shoulder boundary crossing is 

visually confirmed using the forward view.

It should also be noted that left-side roadway departures 
may be drivers intentionally crossing the centerline (i.e., “cut-
ting the curve”). However, it was not possible to identify 
when this occurred versus an inadvertent encroachment.

The amount of speed over the advisory or posted speed 
limit at curve entry was also used as a crash surrogate for 
Research Question 3. Although the correlation between speed 
and crashes on curves has not been established, speeding has 
been identified as a major crash contributor. Curve advisory 
and posted speed limit were known in all cases, and speed 
appeared to be universally present and reasonably accurate.

Research Questions 2 and 4 required a smaller sample size 
than Research Question 3. Additionally, offset was the only 
crash surrogate that made sense for the analyses selected. As 
a result, Research Questions 2 and 4 used offset or lane posi-
tion as a crash surrogate and only included traces when offset 
or position were of sufficient reliability and continuity.
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C h a p t e r  6

This chapter discusses the first research question: What defines 
the curve area of influence?

Drivers begin to react to a curve at some distance upstream. 
This is expected to vary according to curve geometry, sight 
distance, and countermeasures present. Understanding where 
drivers begin to react to the curve is important for placement 
of traffic control and countermeasures. A better understand-
ing of where drivers begin to react to a curve can help agen-
cies determine the optimal placement of advance signing and 
other countermeasures.

Currently, placement of advisory signing along rural curves 
is primarily based on posted or 85th-percentile speeds and the 
amount of deceleration necessary for curve negotiation, fol-
lowing guidelines in the Manual on Uniform Traffic Control 
Devices (MUTCD), Chapter 2 (Federal Highway Administra-
tion 2009). When no deceleration is necessary, the distance var-
ies from 31 m (100 ft) at 56 km/h (35 mph) to 122 m (400 ft) at 
97 km/h (60 mph). Distances increase when speed reduction 
and lane changing in heavy traffic are expected.

Given that appropriate driver response upstream of a curve 
is necessary for proper speed selection and curve negotiation, 
defining the curve area of influence was necessary to determine 
how much data upstream of the curve should be included in 
the present analyses.

The objective of Research Question 1 was to identify where 
drivers begin reacting to a curve. A better understanding of 
where drivers begin to react to a curve can help agencies better 
determine placement of advance signing and other counter-
measures. Research Question 1 was also used to indicate the 
curve area of influence for Research Questions 2, 3, and 4.

Data Sampling and Variables 
Used for research Question 1

Use of eye tracking would have been ideal to determine where 
drivers were looking and noticing curves. However, eye track-
ing was not possible with the video data, and driver glance 

location could only be identified for general directions (e.g., 
left, right, steering wheel). As a result, glance location could not 
be pinpointed with sufficient accuracy to determine whether a 
driver noticed traffic control or roadway countermeasures. 
Therefore, vehicle kinematic data (i.e., braking or changes in 
speed) were the only method to assess at what point drivers 
began reacting to the curve.

Analyses in Phase 1 indicated that pedal position, speed, and 
steering wheel position could be used jointly to indicate the 
point at which a driver began react to the curve. Braking was 
only present in a few events and was therefore not used. After 
data were received for Phase 2, it became evident that steering 
wheel position was not universally recorded. As a result, change 
in speed and change in pedal position were the variables used 
to indicate where drivers began reacting to the curve.

Time series data were used for Research Question 1. Data 
may be output at different resolutions by the different sensors 
but are usually aggregated to 10 Hz (0.1-s intervals). Addi-
tional variables, such as vehicle position relative to the curve, 
were calculated and reported at the same resolution. Changes 
in pedal position and speed were smoothed over 0.5-s intervals 
and were calculated for each row to minimize the impact of 
noise using a moving average smoothing method. An example 
of time series data was shown in Table 3.2.

Speed was reported at 0.1-s intervals for the majority of the 
traces. Pedal position was also usually available but in many 
cases was reported at less frequent intervals (e.g., reported at 
0.6- or 0.8-s intervals), which was too coarse for the models 
to detect changes. Consequently, only traces that had been 
reduced for the initial data request (about 200) that had both 
speed and pedal position reported at 0.1-s intervals were used 
in the analyses.

Additionally, only curves with a minimum distance of 400 m  
(1,312.3 ft) to the nearest upstream curve were used. Analyses 
in Phase 1 had suggested that drivers begin reacting to the 
curve within 200 m (656 ft), so provision of 400 m (1,312.3 ft) 
upstream allowed sufficient distance upstream of the expected 

Analysis for Research Question 1
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reaction point to represent normal driving. Data were extracted 
for each curve of interest for a distance of 400 m (1,312.3 ft) 
upstream and through the curve.

Sample size was limited by the constraints described above. 
The analyses included 127 traces across 36 curves in Indiana, 
New York, and North Carolina. Curve radius varied from 117 m 
to 7,106 m (383.9 ft to 23,313.7 ft). Three curves had chevrons, 
four had W1-6 signs, none had rumble strips, five had guard-
rails, 21 had raised pavement markings, and 16 had curve 
advisory signs.

Methodology for Defining  
Curve area of Influence

The point at which significant pedal position changes occurred 
was obvious in some traces, as shown in Figure 6.1, which 
shows pedal position for two traces (two drivers). In other 
cases, sufficient noise was present for pedal position and steer-
ing wheel position, so it was more difficult to identify the 
point of reaction, as shown in Figure 6.2.

A change point model was used to determine where drivers 
were reacting to the curve. A separate model was fit to each 
curve for each event using time series data. Change point mod-
els were fit using the statistical package R, which uses a regres-
sion model based on Muggeo (2008). The form of the model is 
as follows:

*0 1 2Y D D D( )= β + β + β −

where
 Y =  the dependent variable for each model, which was 

either speed in meters per second or gas pedal 
position;

 D = distance from the point of curvature, in meters; and
 D* =  change point (the distance at which the driver reacts 

to the curve).

Note that distances are measured backwards from the 
point of curvature (D = 0), so all distances for this part of the 
analysis are negative. A change point model was selected 
because it could identify the point at which speed or pedal 
position changed significantly from upstream driving. The 
third parameter of the model, b2, represents the strength of 
the reaction. If b2 is not significantly different from zero, this 
indicates that the driver did not react in a noticeable way to 
the curve.

Thus, for this model the researchers were most interested in 
the values of b2 and D*, because D* indicates the point at 
which the driver reacted to the curve and b2 indicates how 
strong that reaction was. The identified reaction points are 
only meaningful if the strength of the reaction, the value of b2, 
is significantly different from zero. So, the estimated b2 value 
for each model was tested against the hypothesis that b2 = 0.

Models were developed independently for speed and pedal 
position for each curve, for travel in the direction inside of 
the curve and outside of the curve. The reaction distance was 
then compared to MUTCD sign placement values.

Figure 6.1. Change in pedal position for two drivers (Florida Curve 101).
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A second model was developed for traces for 11 curves in 
Indiana for which multiple drivers were available. A Bayesian 
hierarchical change point model is as follows:

( )
( )

( )
( )
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where
i indexes the curve;
j indexes the driver; and
Ri and Ci are the radius and travel direction of curve i, 

respectively.

results for research Question 1

Speed Model

The fitted change point models with speed in meters per sec-
ond as the dependent variable are plotted for each curve, as 
shown in Figures 6.3 to 6.5. A model was developed for each 
trace for each curve. Model results are provided in Appendix C.

Results are shown graphically in Figures 6.3 to 6.5 and 
are grouped by state and by curve and direction of travel 

(inside versus outside of the curve). Traces for many curves 
have similar reaction points, as indicated by the slope of  
the line changing at about the same point, such as curves 
IN44Ain and IN44Jout. Others, however, have distinctly 
different reaction points, as shown for curves IN13Ain and 
IN13Aout.

The average point at which drivers reacted for all curves 
was 164 m (538.1 ft) upstream of the curve. Results were aver-
aged by curve radius, as shown in Table 6.1. When the models 
were tested for significant reactions, 96 of the 127 models were 
found to have significant driver reactions at the 95% confi-
dence level, as shown in Appendix C.

Pedal Position Model

Change point models were also developed using pedal posi-
tion as an indicator of driver response. This variable has no 
units, but is a measure of how far the driver is pushing down 
on the gas pedal. If the value increases, the driver is increasing 
pressure on the pedal, and if the value decreases, the driver is 
decreasing pressure (letting up) on the pedal. For the same 
127 traces across 36 curves in Indiana, New York, and North 
Carolina, the fitted change point models show pedal position 
as the dependent variable. Model results are provided indi-
vidually in Appendix C. Results are plotted graphically in Fig-
ures 6.6 to 6.8 and are grouped by state, curve, and travel 
direction (inside versus outside of the curve).

As noted, some of the curves have very similar reaction 
points for all events, which can be seen in curves IN13Aout 
and IN44Iout. Others, however, have very separated reaction 
points (e.g., curves IN44Ain and IN44Dout).

Again, the values of b2 and D* are of the most interest. The 
furthest reaction point was approximately 488 m (1,601.1 ft) 

Figure 6.2. Change in pedal position for one trace in which change is not obvious.
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Figure 6.3. Fitted speed models for Indiana curves.

Figure 6.4. Fitted speed models for New York curves.



33   

before the point of curvature, and the closest reaction point 
was approximately 13 m (42.7 ft) before the point of curva-
ture, with the mean reaction point about 179 m (587.3 ft) 
before the point of curvature. The estimated b2 value for each 
model was again tested against the hypothesis that b2 = 0, and 
99 of the 127 models were found to have significant driver 
reactions at the 95% confidence level.

The average point at which drivers reacted for all curves 
was 180 m upstream of the curve, which was similar to the 
results for the speed models. Results were averaged by curve 
radius, as shown in Table 6.2. Results for individual models 
are shown provided in Appendix C.

Table 6.1. Speed Change Points Results  
by Curve Radius

Radius in Meters (feet)

Average Change 
Point in Meters 

(feet)
Number 

of Curves

<1000 (3281) -142.9 (-468.8) 4

1000 to <1500 (3281 to <4921) -146.1 (-479.3) 7

1500 to <2000 (4921 to <6562) -193.2 (-633.9) 11

2000 to <2500 (6562 to <8202) -191.1 (-627.0) 6

≥2500 (≥8202) -149.8 (-539.7) 8

Figure 6.5. Fitted speed models for North Carolina curves.

Results for Bayesian Model

The Bayesian model was only fit to a subset of the data: 11 
curves in Indiana for which there was adequate repetition of 
drivers across curves. This model is an improvement on the 
current model because it is able to account for the individual 
differences among drivers, as well as the differences between 
curves. This model also allows the prediction of appropriate 
reaction points for other curves not included in the study, 
which could aid in deciding where to place chevrons and/or 
dynamic speed feedback display units to lower crash incidents 
on rural curves.

After accounting for the radius of the curve, the travel direc-
tion of the curve, and the variability among drivers, all curves 
were found to have about the same reaction point, approxi-
mately 105 m (344 ft) upstream of the curve. The 95% poste-
rior credible interval for this estimate is from 136 m to 64 m 
(446 ft to 210 ft) upstream of the curve.

The exact reaction point for each curve changes with curve 
radius, and curve direction is given by the estimates of b3 and 
b4. The estimate of b3 is -0.000872, with a posterior 95% 
credible interval of (-0.00143, -0.000284). So, for every addi-
tional 100 m (328.1 ft) in the radius of the curve, the reaction 
point moves back from the point of curvature by 0.0872 m 
(0.29 ft). The estimate of b4 is -1.991, with a posterior 95% 
credible interval of (-3.112, -0.73). The curve directions 
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Figure 6.7. Fitted pedal position models for New York curves.

Figure 6.6. Fitted pedal position models for Indiana curves.
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were coded as 0 for inside and 1 for outside, so this estimate 
indicates that the reaction point moves on average about 2 m 
(6.6 ft) further from the point of curvature when the driver is 
traveling on the outside of the curve.

Summary and Discussion

The objective of Research Question 1 was to identify the point 
at which drivers begin reacting to a curve. A better understand-
ing of where drivers begin to react to a curve can help agen-
cies better determine placement of advance signing and other 
countermeasures. Research Question 1 was also used to indicate 
the curve area of influence for Research Questions 2, 3, and 4.

Key Findings

Time series data were modeled using regression and Bayesian 
analysis. The point at which speed and pedal change are sig-
nificantly different from that of upstream driving was identi-
fied. Results indicate that, depending on the radius of the 
curve, drivers begin reacting to the curve 164 m to 180 m 
(538.1 ft to 590.6 ft) upstream of the point of curvature.

Results did suggest that drivers begin reacting to the curve 
sooner for curves with larger radii than for curves with smaller 
radii, as shown in Table 6.3. This was unexpected because 
sharper curves are more likely to have advance signing, chev-
rons, or other countermeasures that have the express purpose 

Figure 6.8. Fitted pedal position models for North Carolina curves.

Table 6.2. Pedal Position Change Points Results  
by Curve Radius

Radius in Meters (feet)

Average Change 
Point in Meters 

(feet)
Number 

of Curves

<1000 (3281) -137.4 (-450.8) 4

1000 to <1500 (3281 to <4921) -163.9 (-537.7) 7

1500 to <2000 (4921 to <6562) -198.1 (-649.9) 11

2000 to <2500 (6562 to <8202) -205.6 (-674.5) 6

≥2500 (≥8202) -186.0 (-610.2) 8

Table 6.3. Average Change Point

Radius in Meters (feet)

Average Change Point  
in Meters (feet)

Pedal Position Speed

<1000 (3281) -137.4 (-450.8) -142.9 (-468.8)

1000 to <1500 (3281 to <4921) -163.9 (-537.7) -146.1 (-479.3)

1500 to <2000 (4921 to <6562) -198.1 (-649.9) -193.2 (-633.9)

2000 to <2500 (6562 to <8202) -205.6 (-674.5) -191.1 (-627.0)

≥2500 (≥8202) -186.0 (-610.2) -149.8 (-539.7)
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of getting a driver’s attention. Additionally, drivers traveling 
at appropriate speeds do not need to reduce speed to the same 
extent on curves without advisory speeds as for curves where 
deceleration is necessary.

There may be several reasons for the unexpected results. 
First, countermeasures that simply warn drivers of an upcom-
ing curve may not be sufficient to change driver behavior. 
Better delineation of the curve may be more effective in pro-
viding the appropriate roadway cues. Most of the curves with 
smaller radii had some type of advance warning, but only 
three had chevrons, which are highly visible in all environ-
mental conditions. Three additional curves had raised pave-
ment markings (RPMs), but RPMs are not as obvious during 
daytime conditions as during nighttime and wet weather 
conditions. Due to the sample size available, it was not possi-
ble to draw relationships between reaction point and presence 
of a specific countermeasure.

It is possible that driver reaction for sharper curves is more 
pronounced, and as a result, the models were better able to 
identify the reaction point. Another explanation for the unex-
pected results is that drivers may indeed be reacting to advance 
signing and delineation and are more gradually slowing than 
for curves with larger radii. Sight distance may also be an issue 
for sharper curves.

Implications for Countermeasures

The MUTCD (Federal Highway Administration 2009) suggests 
placement of warning signs based on posted or 85th-percentile 
speed, the driver’s ability to decelerate to the posted advisory 
speed for the condition, and an assumed legibility distance of 
76 m (250 ft). Sign placement for posted/85th-percentile speeds 
from 72 km/h to 89 km/h (45 mph to 55 mph) range from 31 m 
to 99 m (100 ft to 325 ft). As a result, the point at which a driver 
is able to view a sign (assuming favorable visibility and sight 
distance) is 107 m to 175 m (350 ft to 575 ft).

It should be noted that driver reaction point may be influ-
enced by signs, and as a result, some correlation exists between 
presence of signs and reaction point. However, it was assumed 
that a warning sign only provides information to the driver 
and does not in and of itself cause the driver to react sooner.

The average point at which drivers begin reacting to the 
curve is summarized by curve radius in Table 6.3. This repre-
sents the reaction point for drivers who successfully negotiated 
the curve. Given that warning signs are only likely to be present 
for curves with smaller radii, sign placement falls within the 
reaction distance, suggesting that sign placement distances are 
appropriately set.

The results showing that drivers react sooner to curves with 
larger radii indicates that advisory signs and advisory speeds 
may not be sufficient to alert drivers to the upcoming curves. 
Countermeasures that provide better curve delineation, such 
as chevrons, may provide better cues to drivers so that they 
can gauge the sharpness and respond appropriately.

Limitations

One of the major limitations of this analysis is that driver 
glance location could not be used to detect driver response to 
an upcoming curve. Braking and steering may have provided 
additional insight but were not sufficiently available to include. 
As a result, the models depended on change in speed and pedal 
position to detect reaction point.

The major limitation to these speed and pedal position analy-
ses is that, even with smoothing, there was a significant amount 
of noise. As a result, it was difficult to detect reaction point.

Sample size was also a limitation in this analysis. The sam-
ple size was limited by the number of traces with reliable 
pedal position values that were available in the data that could 
be reduced within the project constraints. If additional data 
were included, the models might be able to relate reaction 
point to countermeasures.
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C h a p t e r  7

This chapter discusses the second research question: What 
defines normal curve negotiation?

A methodology proposed by several other researchers was 
used to develop a relationship between tangent speed and off­
set and curve speed and offset, which was used to define nor­
mal curve driving. This relationship assumes that there is some 
relationship between the tangent and curve speed (drivers who 
speed upstream are also likely to speed within the curve) and 
between lateral offset upstream and within the curve (drivers 
who do not maintain lane position upstream will have similar 
lane keeping within the curve).

Schurr et al. (2002) developed a relationship between the 
operating speed on tangent sections 183 m upstream and at 
the curve midpoint. Stodart and Donnell (2008) collected 
data upstream and within six curves using instrumented 
vehicles with 16 research participants. They compared change 
in speed and lateral position from the upstream tangent to 
the curve midpoint using the following:

∆ = −

∆ = −

MPT MC

MPT MC

V V V

L L L

where
 V = speed;
 L = lateral position;
 MPT = midpoint of tangent; and
 MC = midpoint of curve.

The objective of Research Question 2 was to define normal 
curve driving. Understanding how a driver normally negoti­
ates a curve during various situations provides insight into not 
only how characteristics of the roadway, driver, and envi­
ronment potentially influence how a driver drives, but also the 
areas that can lead to roadway departures. Knowing how much 
drivers normally deviate in their lane, as well as how they choose 
their speed, could potentially have implications on policy or 
design.

Data Sampling and 
Segmentation approach  
for research Question 2

The conceptual model of curve driving assesses changes in 
metrics as the driver negotiates the curve based on the factors 
of the curve and driving behavior upstream of the curve. 
Data for several positions along the curve were sampled from 
the time series data from the DAS, which also had additional 
variables such as driver characteristics and environmental 
characteristics.

The sampling plan for the curve model can be seen in Fig­
ure 7.1. Data were sampled at each point shown (e.g., PC); the 
locations for sampling were determined after plotting events 
and determining which sampling scheme picked up the com­
mon patterns identified. Sampling in the tangent section was 
based on distance. Sampling within the curve was at equi­
distant points rather than at a specified distance because the 
curves have varying lengths.

The points sampled within the curve were the PC, PT, and 
then four equally spaced points (C1, C2, C3, and C4, as shown 
in Figure 7.1). Upstream data were collected every 50 m up 
to 300 m. These locations were chosen to capture driving 
upstream of where drivers react to the curve (i.e., normal tan­
gent driving) along with the area where they react and as they 
approach the entry to the curve. Because the data sampling 
plan required 300 m of upstream data, the analysis included 
only isolated curves (i.e., no S­curves or compound curves) 
and curves with a tangent section that was at least 300 m from 
the nearest upstream curve.

DAS variables were sampled at each point shown. The vari­
ables included offset; speed; environmental characteristics, 
such as whether there was an oncoming vehicle or whether 
the driver was following another vehicle; and driver kine­
matic data, such as glance and distraction. Data collected for 
the upstream area included the offset and speed at each sam­
ple point, along with driver glance location and distractions. 

Analysis for Research Question 2
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In addition, as noted previously, a moving average method 
was used to smooth data across rows (0.5­s intervals) to reduce 
noise present in the variables. These data were merged with 
environmental and driver data. The complete list of variables 
collected is included in Chapter 4.

Because vehicle offset was the crash surrogate used for this 
research question, the offset data had to be quite accurate, as 
small changes in the offset could drastically affect the results 
of the model. Additionally, only isolated curves with a distance 
of 400 m or more to the nearest upstream curve were used.

Time series data for curves that met this criteria were exam­
ined, and data were only used when the team had a high level 
of confidence in the reliability of the lane offset variable for 
the entire tangent and curve sections that were sampled, 
as shown in Figure 7.1. Data were ultimately available for 
17 curves. Thirty­six traces were available for the inside (right­
hand curve) model, and 26 were available for the outside (left­
hand curve) model.

Drivers were distributed by age and gender, as shown in 
Table 7.1.

Variables Used for  
research Question 2

The conceptual model evaluates changes in driver attention 
and response expressed as changes in vehicle kinematics to 
model curve driving. The independent variables used in the 
models were (1) offset (in meters) and (2) the amount the 

driver was driving over the speed limit or curve advisory 
speed if present (in mile per hour). The dependent variables 
examined, along with a description of each, can be seen in 
Table 7.2.

Description of analytical 
approach for research 
Question 2

Models for lane position and speed were developed for both 
inside (right­hand curve from the perspective of the driver) 
and outside (left­hand curve from the perspective of the driver).

For the lane position models, a generalized least squares 
(GLS) model was used. A panel data model was tested with 

Figure 7.1. Data sampling layout for curve driving model.

Table 7.1. Driver Characteristics  
for Research Question 2

Age

Total16 to 25 26 to 50 >50

Inside curve (right-hand)

Male 0 4 3 7

Female 4 1 3 8

Outside curve (right-hand)

Male 0 2 2 4

Female 5 1 5 11
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Table 7.2. Variables Used for Research Question 2

Variable Description

Curve PT Factored variable that indicates the position in the curve from which data are sampled (PC, C1, C2, C3, C4, or PT)

Direction Direction of the curve (0: outside/left, 1: inside/right)

Radius Radius of the curve (m)

Chevrons Indicator variable for chevrons (0: not present, 1: present)

Rumblestrips Indicator variable for rumble strips (0: not present, 1: present)

Guardrail Indicator variable for guardrail (0: not present, 1: present)

RPM Indicator variable for raised pavement markings (0: not present, 1: present)

AdvisSign Indicator variable for curve advisory sign (0: not present, 1: present)

Nighttime indicator Indicator variable for nighttime (0: daytime or dawn/dusk, 1: nighttime)

SpeedUp Speed limit in upstream (mph)

SpeedDiff Speed differential between tangent and curve advisory speed (mph)

Over300 Amount over the speed limit at 300 m upstream of curve (mph)

Over250 Amount over the speed limit at 250 m upstream of curve (mph)

Over200 Amount over the speed limit at 200 m upstream of curve (mph)

Over150 Amount over the speed limit at 150 m upstream of curve (mph)

Over100 Amount over the speed limit at 100 m upstream of curve (mph)

Over50 Amount over the speed limit at 50 m upstream of curve (mph)

Overspeed Amount over the speed limit at point in curve (mph)

Speed (mph) Speed at point in the curve (mph)

Offset Distance offset from centerline in points throughout curve (m)

Offset300 Distance offset from centerline 300 m upstream of curve (m)

Offset250 Distance offset from centerline 250 m upstream of curve (m)

Offset200 Distance offset from centerline 200 m upstream of curve (m)

Offset150 Distance offset from centerline 150 m upstream of curve (m)

Offset100 Distance offset from centerline 100 m upstream of curve (m)

Offset50 Distance offset from centerline 50 m upstream of curve (m)

OffsetSD Standard deviation of offset in 300 m upstream of curve (m)

Distracted200 Visual distraction in 200 m upstream of curve indicator (0: not present, 1: present)

Distracted150 Visual distraction in 150 m upstream of curve indicator (0: not present, 1: present)

Distracted100 Visual distraction in 100 m upstream of curve indicator (0: not present, 1: present)

Distracted50 Visual distraction in 50 m upstream of curve indicator (0: not present, 1: present)

Distracted Visual distraction in curve indicator (1: distraction present, 0: no distraction)

Forward Forward glance at point in curve indicator (1: glance is forward, 0: glance away)

SA Roadway-related glance (1: roadway-related glance, 0: otherwise)

NR Non-roadway-related glance at point in curve indicator (1: present, 0: not present)

NRup Non-roadway-related glance in 200 m upstream of curve indicator (1: present, 0: not present)

NRcurve Non-roadway-related glance in curve indicator (1: present, 0: not present)

Visibility Visibility indicator (1: low visibility, 0: otherwise)

Surface Surface condition (0: dry, 1: pavement wet but not currently raining, 2: snow present, but roadway is bare)

PaveCond Pavement condition (0: normal surface condition, 1: moderate damage, 2: severe damage)

(continued on next page)
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“EventID” as the individual and “Point in Curve” as the time 
setting. The Breusch­Pagan Lagrange multiplier test found 
that no panel effect was present; therefore, an ordinary least 
squares (OLS) model was appropriate. After running the OLS 
models, it was determined that there were problems with 
autocorrelation due to the spatial nature of the data, so a GLS 
model was used to correct for this.

The GLS function in the NLME package of R was used to 
develop the models. Models were selected to minimize Akaike 
information criterion (AIC) and Bayesian information crite­
rion (BIC), while including significant variables from the list 
in Table 7.2. The correlation between the dependent variables 
and independent variables and the correlation between inde­
pendent variables were examined to determine which vari­
ables should potentially be included in the model. The order 
of autoregression parameter was tested using an analysis of 
variance (ANOVA) test. The correlation structure of the model 
took into account the grouping across each event through 
each unique curve. The grouping factor allows for the corre­
lation structure to be assumed to apply only to observations 
within the same unique event.

For the amount­over­the­speed­limit model, an OLS regres­
sion model was developed. The dependent variable was the 
amount over the speed limit (or curve advisory speed) at 
point C2. Modeling the amount over the speed limit for just 
this point was chosen as opposed to modeling speed over the 
entire curve because the only significant difference in speed 
was found at the PT, which is not of interest in the context of 
speed’s role in lane­departure crashes in curves.

The model was developed using the lm() function of the 
R software package while attempting to have the best fit. Vari­
ables were included if they were significant at the 95% con­
fidence level. Two outlier observations were not included 
because they skewed the fit of the model. Diagnostic tests 
showed that the assumptions of normality, linearity, inde­
pendence, and homogeneity were met.

results for research  
Question 2

Four models were developed; lane position and amount of 
the speed limit were used as dependent variables; and models 
were developed for both inside (right­hand curve) and out­
side (left­hand curve) driving, because drivers tend to behave 
differently in each direction of curve. The dependent variable 
for lane position was offset of the center of the vehicle from 
the center of the travel lane. Positive offset is to the right, and 
negative offset is to the left of the center of the lane.

Second­order autoregressive GLS models were developed for 
both lane position models. Panel models were developed for 
both speed models. The results of the lane position and speed­
ing models are discussed below.

Lane Position Model

The best fit model for lane position for right (inside) curves 
was developed using 216 observations and contained eight 
variables. The list of variables and parameter estimates is 
shown in Table 7.3. The model suggests that as drivers tend to 
the right (toward the edge line) in the upstream, the offset 
in the curve will also shift to the right, or near the outside of 
the lane.

If the driver is engaged in an eyes­off­roadway distraction 
at a particular point in the curve, the driver’s lane position is 
expected to shift to the right near the outside of the lane 0.14 m 
at the next point. For instance, if a driver is engaged in an eyes­
off­roadway distraction at 50 m upstream, the driver’s lane 
position is expected to shift right 0.14 m at the PC.

The model also suggests that for every year older a driver 
is, the driver’s lane position is expected to move toward the 
right 0.00345 m.

Finally, the model includes indicator variables relating to 
the position in the curve. At position C1 (see Figure 7.1), 

Delineation Delineation condition (0: highly visible, 1: visible, 2: obscured)

Shoulder Paved shoulder width (1: less than 1 ft, 2: 1 ft to less than 2 ft, 3: 2 ft to less than 4 ft, 4: greater than or equal to 4 ft)

LargeShoulder Paved shoulder greater than or equal to 4-ft indicator (0: not present, 1: present)

Gender Gender indicator (0: female, 1: male)

Under25 Age under 25 indicator (0: over 25, 1: under 25)

Under30 Age under 30 indicator (0: over 30, 1: under 30)

Age Age of driver at time of first drive

LargeVeh Large vehicle (i.e., truck or SUV) indicator (0: car, 1: truck or SUV)

Table 7.2. Variables Used for Research Question 2 (continued)

Variable Description
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which is just past the point of curvature, the average position 
is 0.17 m to the right of the center of the lane. At position C2 
the average position is 0.19 m. As the driver gets closer to the 
center of the curve (position C3), the average lane position is 
0.40 m to the right, which is a shift of more than 0.2 m from 
the upstream position. Drivers then move back toward the cen­
ter of the lane at positions C4 and the PT (0.27 m and 0.18 m, 
respectively). As indicated, a driver’s drift to the outside lane 
edge near the center of the curve suggests that the driver may 
be most vulnerable to a right­side roadway departure near the 
center of the curve.

These parameters support the idea that drivers do not 
maintain a smooth path through the curve. The first­order 
autoregression parameter phi was found to be 0.57808, and 
the second­order was –0.28316.

The best fit model for lane position for left (outside) curves 
was developed using 156 observations and included nine vari­
ables, as shown in Table 7.4. The parameter for offset at 100 m 
is similar to that in the right curve lane position model, just at 
a slightly greater magnitude. The model suggests that if a 
driver tends to drive to the right of the lane center upstream 
of the curve, the driver will also tend to drive to the right of the 
lane center within the curve.

When drivers engage in a non­roadway­related glance at a 
particular location, their lane position is expected to move to 
the left, or toward the centerline, by 0.13 m.

At night, lane position shifts toward the left (toward the 
centerline) by 0.12 m, which could potentially occur because 
there are fewer oncoming vehicles. When a large paved shoulder 

(≥4 ft) is present, the model predicts that the driver will 
move toward the right (toward the edge line) by 0.21 m; this 
is expected because the driver has more space than when no 
paved shoulder is present.

Indicator parameters for position in the curve were also 
included. While the parameters for indicators C4 and PT 
were not significant, they were still included because they 
give some information on the change in position throughout 
the curve.

As drivers enter the curve and move to the center of the 
curve (positions C1 to C3, as shown in Figure 7.1), they tend 
to be positioned about 0.16 m to 0.21 m to the left of the 
center of the lane (toward the centerline). As drivers move to 
the end of the center of the curve (position C4 and the PT), 
they move to the right toward the center of the lane. This sug­
gests that drivers may be most likely to cross the roadway cen­
terline as they enter the curve.

Speed Model

The amount a driver was over the advisory speed if present or 
posted tangent speed if not present was modeled at point C2 
using OLS. The best fit model had an adjusted R2 value of 
0.741 (n = 60) and five variables. Speed model variables are 
shown in Table 7.5.

Model results show that for every 1.6 km/h (1.0 mph) over 
the speed limit a driver is traveling at 100 m upstream of the 
curve, the amount over the speed limit at point C2 is expected 
to increase by 1.1 km/h (0.7 mph). This result is expected 

Table 7.3. Significant Variables for Right Curve Lane Position Model

Variable Parameter Estimate p-Value

Constant -0.22185 0.0005

Offset at 100 ft upstream of curve 0.36714 0.0000

Distracted at the previous point in the curve or upstream 
indicator (0: not distracted, 1: distracted)

0.13592 0.0500

Driver’s age (years) 0.00345 0.0001

C1 position indicator (0: not C1, 1: C1) 0.16931 0.0001

C2 position indicator (0: not C2, 1: C2) 0.18865 0.0012

C3 position indicator (0: not C3, 1: C3) 0.39609 0.0000

C4 position indicator (0: not C4, 1: C4) 0.26790 0.0000

PT position indicator (0: not PT, 1: PT) 0.17682 0.0020

First-order autoregression disturbance parameter (phi 1) 0.57808

Second-order autoregression disturbance parameter (phi 2) -0.28316

Number of observations 216
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because drivers who are traveling over the speed limit in the 
tangent are also likely to speed within the curve. Speeds are 
expected to be 2.8 km/h (1.7 mph) slower at nighttime than 
during the day.

Additionally, the model suggests that those who drive a 
truck or SUV are expected drive 2.1 km/h (1.3 mph) faster 
than those who drive a passenger vehicle. The model also 
found that for every additional 10 years in age for a driver, 
speed decreases by 0.9 km/h (0.5 mph). Finally, the model 
suggests that if drivers are engaged in a non­roadway­related 

glance at point C2, they are expected to be driving 5.3 km/h 
(3.3 mph) slower than if they were glancing at the roadway.

Summary and Implications

The objective of Research Question 2 was to define normal 
curve driving. Understanding how a driver normally negotiates 
a curve during various situations provides insight into not only 
how characteristics of the roadway, driver, and environment 
potentially influence how a driver drives, but also the areas that 

Table 7.4. Significant Variables for Left Curve Lane Position Model

Variable Parameter Estimate p-Value

Constant 0.00067 0.9904

Offset at 100 ft upstream of curve 0.44811 0.0002

Nonroadway glance at point in curve indicator (0: roadway 
glance, 1: nonroadway glance)

-0.13466 0.0193

Night indicator (0: daytime, 1: night) -0.12283 0.0155

Paved shoulder greater than 4 ft indicator (0: paved shoulder 
less than 4 ft, 1: paved shoulder ≥ 4 ft)

0.21273 0.0006

C1 position indicator (0: not C1, 1: C1) -0.17691 0.0014

C2 position indicator (0: not C2, 1: C2) -0.20758 0.0044

C3 position indicator (0: not C3, 1: C3) -0.16169 0.0304

C4 position indicator (0: not C4, 1: C4) -0.02272 0.7495

PT position indicator (0: not PT, 1: PT) 0.05718 0.4071

First-order autoregression disturbance parameter (phi 1) 0.49063

Second-order autoregression disturbance parameter (phi 2) -0.26283

Number of observations 156

Table 7.5. Significant Variables for Speed Model

Variable Parameter Estimate p-Value

Constant 3.70299 <0.001

Amount over the speed limit at 100 m upstream of curve 0.70772 <0.001

Driver’s age (years) -0.05340 <0.001

Night indicator (0: daytime or dusk, 1: nighttime) -1.73462 0.028

Vehicle type (0: car, 1: truck or SUV) 1.30152 0.029

Non-roadway-related glance at current point indicator  
(0: roadway-related glance, 1: non-roadway-related glance)

-3.32218 0.037

Number of observations 60

Adjusted R2 0.741
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can lead to roadway departures. Knowing how much drivers 
normally deviate in their lane, as well as how they choose their 
speed, could potentially have implications on policy or design.

Conceptual models of curve driving were developed to 
assess changes in lane position and speed as the driver negoti­
ates the curve. Understanding how a driver normally negoti­
ates a curve during various situations provides insight not 
only into how characteristics of the roadway, driver and envi­
ronment potentially influence driving behavior, but also into 
areas that can lead to roadway departures.

Additionally, the model indicates boundaries for normal 
driving. Originally, the intent of answering this research ques­
tion was to use this information to identify events of interest 
(nonnormal driving) to help establish boundaries between 
noncrash roadway departure events for Research Question 3. 
This was not possible because many traces did not have lane 
position of sufficient reliability, and Research Question 3 
required a larger sample size than the other research questions.

Data for several positions upstream and along the curve 
were sampled from the time series data. Models were devel­
oped for lane position and speed for both inside (right­hand 
curve from the perspective of the driver) and outside (left­
hand curve from the perspective of the driver), resulting in 
four models. Lane position was modeled as the offset of the 
center of the vehicle from the center of the lane. Models were 
developed using GLS.

Summary of Results

Results indicate that lane position within the curve is influ­
enced by lane position upstream of the curve. The models 
developed for offset of lane centerline in this study found that 
drivers who were distracted or glanced away from the road­
way tended to shift away from the center of the lane. When 
driving on the inside of the lane, a driver who was distracted 
at a particular point within the curve tended to shift 0.14 m 
to the right by the next point in the curve. When driving on 
the outside (left­hand curve), a driver who engaged in a non­
roadway­related glance at a particular location within the 
curve was expected to move to the left, or toward the center­
line, by 0.13 m at that same point. This confirms the role of 
distraction in lane keeping.

The models also found that drivers on the inside of a curve 
tended to move more to the right at the center of curve, while 
drivers on the outside of a curve were at the furthest point 
from the centerline at the beginning of the curve. This sug­
gests that drivers may be particularly vulnerable to roadway 
departures at certain points in the curve negotiation process. 
Additionally, the lane offset models indicated that age and 
nighttime are factors in driver lane position.

The model for speeding in the curve found that if drivers 
are speeding in the upstream, they will also speed in the 

curve. Drivers of SUVs and pick­up trucks travel on aver­
age 2.1 km/h (1.3 mph) faster than drivers of passenger 
vehicles.

Speeds were predicted to be 0.9 km/h (0.5 mph) lower for 
each additional 10 years in age for a driver, and drivers who 
were engaged in a non­roadway­related glance were expected 
to travel 5.3 km/h (3.3 mph) slower than drivers who were 
not engage in a non­roadway­related glance. This suggests 
that drivers whose attention is focused away from the road­
way do not maintain longitudinal control.

Implications for Countermeasures

Lane position varies as a function of position within the 
curve. On the inside of a curve lane, position offset is greatest 
at the center of the curve. For the outside of the curve lane, 
position offset is the largest at the beginning of the curve. 
Additionally, drivers who engaged in eyes­off­roadway dis­
tractions tended to shift right of the center of the lane on the 
inside of the curve.

Both factors indicate that drivers may be more vulnerable 
to a lane departure at certain points within the curve. As a 
result, countermeasures such as rumble strips, paved shoul­
ders, and high­friction treatments may ameliorate the conse­
quences of variations in lane position through the curve.

Lane position offset is greater for the outside of the curve 
during nighttime driving, which suggests that better delinea­
tion of curves (edge lines, post­mounted delineators, chev­
rons) may aid drivers in nighttime curve driving. The models 
also confirm that drivers who speed upstream are likely to 
speed within the curve, which suggests that countermeasures 
that reduce speeds upstream will calm speeds within the curve.

Limitations

The main limitation of this analysis was sample size. Reliable 
offset data were only available in a subset of the vehicle traces 
that were reduced. As a result, the number of driver types and 
roadway features that could be modeled was limited. Conse­
quently, the results are not transferable to all curves or situa­
tions. Adding more data to these models may draw out more 
relationships or strengthen those already found. A more robust 
data set could also allow for a mixed effects model to be per­
formed, which would allow the findings to be applied toward 
more curves than those used in the study.

Although the models provided information about factors 
that result in greater deviation within the lane or higher speeds, 
the models did not draw correlations between these two factors 
and increased roadway departure crash risk. It is only assumed 
that countermeasures that improve lane position or reduce 
speeds will also reduce roadway departure crashes.
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C h a p t e r  8

This chapter discusses the third research question: What  
is the relationship between driver distraction; other driver, 
roadway, and environmental characteristics; and roadway 
departure risk?

Research Question 3 investigates how driver behaviors in 
conjunction with roadway and environmental factors affect 
the likelihood of a roadway departure on rural two-lane curves. 
The team had examined a number of different models—
including generalized linear models, Bayesian models, and 
regression tree analysis—during a similar study. That study 
used NDS data to evaluate roadway departures as part of 
SHRP 2 Project S01E, Evaluation of Data Needs, Crash Sur-
rogates, and Analysis Methods to Address Lane Departure 
Research Questions Using Naturalistic Driving Study Data 
(Hallmark et al. 2011). Logistic regression was determined to 
be the best model.

Logistic regression models the probability (odds) of a given 
type of roadway departure based on driver, roadway, and 
environmental characteristics. Odds ratios are the probability 
that an event happens in relation to the probability that it 
does not happen. Logistic regression evaluates the association 
between a binary response and explanatory variables. The 
natural logarithm of the odds is related to explanatory variables 
using a linear model. The value of using logistic regression is 
that the model output (odds ratio) can be easily understood 
by transportation agencies. As a result, multivariate logistic 
regression was used to model the probability (odds) of a 
roadway departure based on driver, roadway, and environ-
mental characteristics. Data are aggregated to the event level 
for this analysis.

The objective of Research Question 3 was to identify which 
roadway, environmental, and driver factors are related to road-
way departure risk. Models were developed that assessed the 
probability of a right-side encroachment, probability of a left-
side encroachment, probability that the driver will enter the 
curve 8 km/h (5 mph or more) over the advisory speed if pres-
ent or posted speed limit if not present, and probability that the 

driver will enter the curve 16 km/h (10 mph or more) over the 
advisory speed if present or posted speed limit if not present.

Data Sampling and  
Modeling approach for 
research Question 3

Data at the event level were used for this analysis. Data were 
aggregated by epoch: each epoch is one row of data and rep-
resents one driver trip through a single curve. The amount of 
time (decoseconds of data) a driver was traversing the curve was 
used to normalize epochs with different durations. One row 
of data (one observation) included information for a section 
200 m upstream of the curve and within the curve. Two hundred 
meters was identified as the curve area of influence in Research 
Question 1.

A total of 583 observations were included in the analysis. 
The sample included 57 right-side roadway departures and 
40 left-side roadway departures. The advisory speed when 
present or the posted speed limit when the advisory speed 
was not present was exceeded by more than 8 km/h (5 mph) for 
245 observations and was exceeded by 16 km/h (10 mph) 
for 123 observations. Data were aggregated to the event level 
for this analysis.

As mentioned above, the team had previously examined a 
number of different models—including generalized linear 
models, Bayesian models, and regression tree analysis—during 
its work on a similar study (Hallmark et al. 2011). The team 
considered the objective of Research Question 3 and the type 
of data being modeled. Additionally, model output was con-
sidered because the output of some models is more easily 
understood than that of others. For instance, logistic regression 
provides the probability or odds of a certain event happening, 
which can easily be understood by the stakeholders who are 
expected to use the results of this research, including state and 
local transportation agencies. Given these considerations, 
logistic regression was determined to be the best model.

Analysis for Research Question 3
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Variables Used for 
research Question 3

Table 8.1 shows the reduced kinematic variables used in this 
analysis. The two response variables included in the analyses 
are (1) the probability of a right-side or left-side roadway 
departure and (2) the probability that the driver entered the 
curve at 8 km/h or 16 km/h (5 mph or 10 mph) over the curve 
advisory speed when present or the posted speed limit when 
not present.

Driver, roadway, and environmental factors were included 
in the analysis as independent variables. Static roadway 

characteristics were extracted as described in Chapter 4. Envi-
ronmental characteristics (e.g., night, raining) were consid-
ered to be consistent across the event and were also reduced as 
described in Chapter 4. Some driver characteristics were also 
static (e.g., age, gender). While a driver’s age changed over 
the study period, the age of the driver at the time the study 
commenced was generally used.

Kinematic driver characteristics (e.g., glance location and 
distraction) were reduced and reported at the same resolu-
tion as the time series data from the DAS (10 Hz). Kinematic 
driver and vehicle characteristics were summarized for 200 m 
upstream of the point of curvature and through the curve. 

Table 8.1. Description of Reduced Kinematic Variables

Variable Measure

UpOncoming Fraction of time oncoming vehicles are present for 200 m upstream of the curve (e.g., number of 0.1-s intervals)

Oncoming Fraction of time oncoming vehicles are present within the curve

UpFollow Fraction of time oncoming subject vehicles following lead vehicle 200 m upstream of the curve

Follow Fraction of time oncoming subject vehicles following lead vehicle

Up_Spd Speed averaged over 200 m upstream of the curve (m/s)

Up_Std Standard deviation of speed for 200 m upstream of the curve

Speed Speed averaged over curve (m/s)

Std Standard deviation of speed within the curve

Ent_Spd Speed at which vehicle entered curve (m/s)

UP_FR Fraction of time driver glance location is forward roadway for 200 m upstream of the curve

FR Fraction of time driver glance location is forward roadway over the curve

UP_SA Fraction of time driver glance location is to roadway-related tasks for 200 m upstream of the curve

SA Fraction of time driver glance location is to roadway-related tasks over the curve

UP_NR Fraction of time driver glance location is to non-roadway-related tasks for 200 m upstream of the curve

NR Fraction of time driver glance location is to non-roadway-related tasks over the curve

UP_PASS Fraction of time driver glance location is away from roadway on passenger-related tasks for 200 m upstream of the curve

PASS Fraction of time driver glance location is away from roadway on passenger-related tasks over the curve

UP_InVeh Fraction of time driver glance location is away from roadway on in-vehicle-control-related tasks for 200 m upstream of the curve

InVeh Fraction of time driver glance location is away from roadway on in-vehicle-control-related tasks over the curve

UP_CELL Fraction of time driver glance location is away from roadway on cell phone–related tasks for 200 m upstream of the curve

CELL Fraction of time driver glance location is away from roadway on cell phone–related tasks over the curve

UP_PerHY Fraction of time driver glance location is away from roadway on personal hygiene–related tasks for 200 m upstream of the curve

PerHY Fraction of time driver glance location is away from roadway on personal hygiene–related tasks over the curve

UP_EAT Fraction of time driver glance location is away from roadway on eating/drinking-related tasks for 200 m upstream of the curve

EAT Fraction of time driver glance location is away from roadway on eating/drinking-related tasks over the curve

Up_AVG_SR Average length of glance away from forward roadway to roadway-related locations (seconds) for 200 m upstream of curve

AVG_SR Average length of glance away from forward roadway to roadway-related locations (seconds) through curve

Up_AVG_NR Average length of glance away from forward roadway (seconds) to non-roadway-related locations for 200 m upstream of curve

AVG_NR Average length of glance away from forward roadway (seconds) to non-roadway-related locations through curve
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These characteristics were reduced to the event level (see 
Table 8.1). For instance, vehicle speed for each 0.1-s interval 
over the curve was averaged.

Random effect variables were included to account for 
multiple samples for the same driver or same curve. Separate 
models were developed for right- and left-side roadway depar-
tures because they are likely to be affected by different factors 
and are two distinct events.

Description of analytical 
approach and results  
for research Question 3

Right-Side Encroachment

Logistic regression was used to model the odds of a right-side 
encroachment (0 for no right-side encroachment, 1 for right-
side encroachment) for each event indexed by i as a random 
variable, γi, which follows a Bernoulli distribution with prob-
ability of departure, pi.

∼ ( )γ Bernoulli pi i

For the logistic regression, the log odds of a right-side 
encroachment were modeled as follows:

log
1

0,

0,

0 1 1 2 2 3 3 4 4 5 5

2

2

p

p
x x x x x

Normal

Normal

i

i
i i

i d

i c

∼

∼

( )
( )

−






= β + β + β + β + β + β + α + γ

α σ

γ σ

where
 x1 =  proportion of time the driver is glancing at the forward 

roadway 200 m upstream of the curve;
 x2 =  indicator for curve direction (0 = outside; 1 = inside);
x3  = radius of the curve (m);
x4  =  indicator for presence of a guardrail (0 = not present; 

1 = present);
x5  =  indicator for presence of a curve warning sign, either 

a W1-6 sign or curve advisory sign (0 = not present;  
1 = present);

	ai = random effect for subject; and
	γi = random effect for curve.

This model was chosen as the best fit model for the data by 
model selection using PROC LOGISTIC in SAS and by com-
paring the AIC/BIC values to various other models that were 
examined.

All models were fit using the glmer() command in the lme4 
package in R. The fitted model parameters, p-values, and 90% 
Wald confidence intervals are shown in Table 8.2.

Wald intervals were calculated as follows:

pˆ
.95z si iβ ±

where
	 b̂i = the estimate of the parameter given above;
 z.95 =  the 95th percentile of the standard normal distribution; 

and
 si = the standard error of the estimate (not given).

The odds ratios for this model, which are equivalent to 
exp(bi) for i = 1, . . . , 6, are given in Table 8.3. For the dummy 
variables, the odds of a right-side encroachment change by a 
factor of exp(bi) when the object (traveling on the inside of 
the curve, etc.) is present relative to when it is not present. For 
the numeric variables, the odds of a right-side encroachment 
change by a factor of exp(bi) when the covariate xi increases 
by 1 unit. Table 8.3 shows the 90% Wald intervals for these 
estimates, which are calculated by exponentiating the bound-
aries of the confidence intervals in Table 8.2.

Because Up_FR is a proportion, a more appropriate estimate 
of the odds ratio might correspond to the change in odds of 
lane departure when forward glance time increases by 0.10, or 

Table 8.2. Parameter Estimates for Right-Side 
Encroachments

Parameter Estimate p-value 5% 95%

b0 -1.4039 0.1998 -3.2049 0.3972

b1 -1.9968 0.0388 -3.5866 -0.407

b2 1.9116 2.57E-06 1.2194 2.6039

b3 -4.00E-04 0.0399 -8.00E-04 -1.00E-04

b4 -1.121 0.1072 -2.2656 0.0237

b5 0.2337 0.6144 -0.5293 0.9967

s2
d 1.1754 NA NA NA

s2
c 0.4243 NA NA NA

Table 8.3. Confidence Intervals for Right-Side 
Encroachments

Variable

Odds 
Ratio 

Estimate 5% 95%

Up_FR 0.1358 0.0277 0.6656

Direction (inside versus outside) 6.7642 3.385 13.5167

Radius 0.9996 0.9992 0.9999

Guardrail (present versus not 
present)

0.326 0.1038 1.024

Curve warning (present versus 
not present)

1.2632 0.589 2.7093
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10% of total time upstream of the curve. This value is given 
by the following:

exp 0.10 0.81901( )β =

Thus, the odds of lane departure increase by a factor of 
1/0.8190 = 1.221 when the proportion of forward glance time 
upstream of the curve decreases by 0.10.

The results also indicate that a right-side lane departure is 
6.8 times more likely on the inside of a curve compared with 
the outside of the curve.

Lane departures are slightly more likely (1.3 times) for curves 
with any type of curve advisory sign (including W1-6). It is 
unlikely that the presence of the warning sign leads to increased 
probability of a right-side encroachment. Rather, it is likely that 
advisory signs are more likely to be present on curves of a cer-
tain type (i.e., those with sight distance issues, sharper curves), 
and encroachments are also more likely for those road types. 
Additionally, the results suggest that the simple presence of 
curve warning signs does not mitigate roadway departures.

A statistically significant but small correlation exists between 
radius of curve and probability of a right-side encroachment.

Drivers were 0.33 times less likely to have a right-side 
encroachment on roadways where a guardrail is present.  
A guardrail is used to decrease the severity of a crash when 
a vehicle leaves the roadway. It is not a countermeasure to 
prevent roadway departures. The presence of a guardrail may 
suggest to the driver that roadway conditions are less safe, 
resulting in better driver attention. Additionally, few delineation 
countermeasures (e.g., chevrons) were present in the curves 
included in the analysis. As a result, a guardrail may provide 
some delineation of the curve, which provides feedback to the 
driver about the sharpness of the curve.

Left-Side Encroachment

The log odds of left-side encroachment were modeled as 
follows:
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where
 x1 =  dummy variable for driver gender (0 = female;  

1 = male);
 x2 =  dummy variable for the direction of the curve  

(0 = outside; 1 = inside);
 x3 = radius of the curve;
	ai = random effect for drivers; and
	γi = random effect for curve.

Parameter estimates, p-values, and 90% Wald confidence 
intervals are shown in Table 8.4.

Odds ratios and 90% Wald confidence intervals are shown 
in Table 8.5.

As noted, males are more than four times more likely to 
have a left-side encroachment, and drivers traveling on the 
inside of the curve are 0.1 times less likely to have a left- 
side encroachment than drivers traveling on the outside of 
the curve. The impact of radius was statistically significant 
but minor.

Left-side encroachments are likely to be drivers who “cut 
the curve.” Although driver intent is difficult to determine, in 
several cases the driving manner as evidenced in the forward 
videos suggested that the driver was intentionally crossing the 
centerline.

Probability of Exceeding Posted or  
Advisory Speed by 8 km/h (5 mph)

The log odds of a vehicle traveling 8 km/h (5 mph) or more over 
the posted or advisory speed limit was also modeled using 
logistic regression as follows:
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Table 8.4. Parameter Estimates for Left-Side 
Encroachments

Parameter Estimate p-value 5% 95%

b0 -3.2435 2.00E-04 -4.6796 -1.8074

b1 1.4888 0.0753 0.112 2.8656

b2 -2.2653 7.00E-04 -3.3661 -1.1645

b3 -7.00E-04 0.06 -0.0012 -1.00E-04

s2
d 1.879 NA NA NA

s2
c 2.383 NA NA NA

Table 8.5. Confidence Intervals for Left-Side 
Encroachments

Variable
Odds Ratio 

Estimate 5% 95%

Gender (male versus female) 4.4318 1.1186 17.5587

Direction (inside versus outside) 0.1038 0.0345  0.3121

Radius 0.9993 0.9988  0.9999
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where
 x1 = driver age (years);
 x2 =  fraction of time following another vehicle 200 m 

upstream of the curve;
 x3 = average speed 200 m upstream of the curve (m/s);
 x4 =  indicator for roadway markings (0 = visible markings; 

1 = obscured markings/not present);
 x5 =  indicator for visibility (0 = clear; 1 = any reduced 

visibility);
 x6 = the radius of the curve (m);
 x7 =  indicator for presence of a paved shoulder (0 = not 

present; 1 = present);
 x8 =  indicator for raised pavement markings (0 = not present; 

1 = present);
	ai = random effect for drivers; and
	γi = random effect for curve.

Again, the categorical variables can be thought of as having 
more than one coefficient, with the interpretations of estimates 
and odds ratios the same as in the previous section.

Parameter estimates, p-values, and 90% Wald confidence 
intervals are shown in Table 8.6.

Odds ratios and 90% Wald confidence intervals are shown 
in Table 8.7.

Results show that drivers who are following other vehicles 
or driving under reduced visibility conditions are less likely 
to enter the curve at 8 km/h (5 mph) or more over the posted or 
advisory speed. Drivers traveling at higher speeds upstream are 
much more likely to enter the curve at 5 mph over the speed 
limit, as expected. Additionally, when pavement markings are 
obscured or not present, drivers are significantly more likely to 
enter the curve more than 8.0 (5 mph) over the posted/advisory 
speed. Lane line markings may provide curve delineation, 

which aids drivers in gauging the sharpness of the curve so 
that they are better able to select curve entry speeds.

The odds ratio estimates for the paved shoulder and raised 
paved markings indicator variables are extremely small, though 
they are still significantly different from zero in the model. 
This suggests that drivers are less likely to speed when paved 
shoulders or raised pavement markings are present. However, 
these variables are best used within the whole model, instead 
of being considered separately, as their estimates are almost 
nonsensical. However, their extreme values do indicate that 
their presence significantly decreases the odds of speeding 
more than 5 mph over the posted/advisory speed.

Probability of Exceeding Posted or  
Advisory Speed by 16 km/h (10 mph)

The log odds of a driver exceeding the posted or advisory 
speed by 16 km/h (10 mph) or more were modeled using the 
following equation:
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where
 x1 = average speed 200 m upstream of the curve (m/s);
 x2 =  average amount of time driver glance is away from the 

road and engaged in driving tasks;
 x3 = radius of the curve (m);
 x4 = indicator for paved shoulder (0 = unpaved; 1 = paved);
 x5 =  indicator for raised pavement markings (0 = not present; 

1 = present);
	ai = random effect for drivers; and
	γi = random effect for curve.

Table 8.6. Parameter Estimates for 5 mph  
Over the Speed Limit

Parameter Estimate 5% 95% p-value

b0 -26.0071 -34.617 -17.3973 6.75E-07

b1 -0.0683 -0.1219 -0.0146 0.0365

b2 -2.0832 -3.2748 -0.8916 0.004

b3 1.8159 1.4302 2.2016 9.64E-15

b4 7.2735 3.8652 10.6818 4.00E-04

b5 -4.94 -7.4111 -2.4688 0.001

b6 -0.0015 -0.0022 -8.00E-04 3.00E-04

b7 -10.3751 -15.0862 -5.664 3.00E-04

b8 -7.3919 -10.3264 -4.4574 3.42E-05

s2
d 41.215 NA NA NA

s2
c 4.831 NA NA NA

Table 8.7. Confidence Intervals for 8 km/h (5 mph) 
Over the Speed Limit

Parameter Estimate 5% 95%

Age 0.934  0.8852 0.9855

UpFollow 0.1245  0.0378 0.41

UpSpd 6.1465  4.1795 9.0393

Markings 1441.5916 47.7128 43556.112

Visibility 0.0072  6.00E-04 0.0847

Radius 0.9985  0.9978 0.9992

PvdShd 3.11998E-05  2.80638E-07 0.0035

RPM 6.00E-04  3.27568E-05 0.0116
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Parameter estimates, p-values, and 90% Wald confidence 
intervals are provided in Table 8.8.

The odds ratios and 90% Wald confidence intervals are 
shown in Table 8.9.

As noted in Table 8.9, the average speed upstream signifi-
cantly increases the likelihood that a driver will also exceed the 
curve advisory/posted speed limit by 16 km/h (10 mph) or 
more. The length of the glance away from the forward roadway 
to roadway-related tasks (e.g., glances at rearview mirror) 
decreases the likelihood that drivers will exceed the posted/
advisory speed. This indicates that drivers may tend to slow 
down when they engage in longer glances away from the for-
ward roadway.

The probability of exceeding the posted/advisory speed is 
correlated to radius. As radius increases, drivers are less likely 
to exceed the posted/advisory speed. Curves with smaller radii 
are more likely to have an advisory speed, and presumably 
drivers are more likely to exceed lower speed limits.

The odds ratio estimates for the paved shoulder and raised 
paved markings indicator variables are extremely small, though 
they are still significantly different from zero in the model. 
This suggests that drivers are less likely to speed when paved 
shoulders or raised pavement markings are present. However, 

these variables are best used within the whole model, instead 
of being considered separately, as their estimates are almost 
nonsensical. However, their extreme values do indicate that 
their presence significantly decreases the odds of speeding 
over 16 km/h (10 mph).

Summary of Crash/ 
Near-Crash events

Only one crash and three near crashes were present in the 
data set. Therefore, a model could not be developed for this 
research. All three near crashes appeared to be near rear-end 
collisions, with the roadway departure caused by the driver 
swerving to avoid the potential rear-end crash.

A review of the data for the crash indicated that speeding was 
likely a major factor because the driver was 15 km/h (9 mph) 
over the posted speed limit of 72 km/h (45 mph) and 55 km/h 
(34 mph) over the curve advisory speed of 32 km/h (20 mph). 
The driver was not engaged in any distracting tasks and only 
glanced away from the forward view once (a glance to the steer-
ing wheel, which lasted 0.6 s). The crash occurred between 
midnight and 3:00 a.m. There was some evidence of drowsi-
ness because the driver was resting his head on his right arm 
or hand.

The radius of curve was 50 m, and no shoulders, chevrons, 
or other countermeasures were present.

Summary and Discussion

The objective of Research Question 3 was to assess the relation-
ship between driver, roadway, and environmental factors and 
risk of a roadway departure. The crash surrogates used for this 
research question were probability of a right-side encroach-
ment, probability of a left-side encroachment, probability that 
the driver exceeded the posted or advisory speed by 5 mph or 
more, and probability that the driver exceeded the posted or 
advisory speed by 10 mph or more. Logistic regression was 
used to model observations at the event level.

Key Findings

Four different models were developed. The model for right-side 
encroachments indicated that the probability of a right-side 
encroachment increases as drivers spend less time glancing at 
the forward roadway. The results also indicate that a right-side 
lane departure is 6.8 times more likely on the inside of a curve 
compared with the outside of the curve. Lane departures are 
slightly more likely (1.3 times) for curves with any type of 
curve advisory sign (including W1-6). A statistically significant 
but small correlation exists between radius of curve and prob-
ability of a right-side encroachment. Drivers were 0.33 times 

Table 8.8. Parameter Estimates for 16 km/h  
(10 mph) Over the Speed Limit

Parameter Estimate p-value 5% 95%

b0 -57.7719 6.77E-07 -76.9007 -38.6432

b1 3.3555 1.70E-10 2.4912 4.2198

b2 -1.8275 0.0485 -3.3513 -0.3038

b3 -0.0028 0.0429 -0.005 -5.00E-04

b4 -24.6413 0.0048 -39.002 -10.2807

b5 -16.3668 0.0259 -28.4486 -4.285

s2
d 339.603 NA NA NA

s2
c 2.904 NA NA NA

Table 8.9. Confidence Intervals for 16 km/h  
(10 mph) Over the Speed Limit

Variable
Odds Ratio 

Estimate 5% 95%

UpSpd 12.0763 12.0763 68.0172

Avg_SA  0.035  0.035  0.738

Radius  0.995  0.995  0.9995

PvdShd  1.15252E-17  1.15252E-17  3.42885E-05

RPM  4.41499E-13  4.41499E-13  0.0138
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less likely to have a right-side encroachment on roadways with 
a guardrail.

The model for left-side encroachments indicated that males 
are more than four times more likely to have a left-side lane 
departure, and drivers traveling on the inside of the curve are 
0.1 times less likely to have a left-side encroachment than 
drivers traveling on the outside of the curve. The impact of 
radius was statistically significant but minor.

The probability that a driver will be 8 km/h (5 mph) or more 
over the posted/advisory speed is higher for younger drivers, 
when drivers have a higher average speed upstream, and when 
edge line markings are obscured or not present. The amount 
of time a driver spends following another vehicle, presence of 
lower visibility conditions, and presence of paved shoulders 
and RPMs decreases the probability that a driver will enter 
the curve 8 km/h (5 mph) or more over the posted/advisory 
speed.

The probability that a driver will be 16 km/h (10 mph) or 
more over the posted/advisory speed is higher when drivers 
have a higher average speed upstream. The probability is lower 
when the average glance at roadway-related tasks is longer and 
when paved shoulders and RPMs are present.

Implications for Countermeasures

The presence of warning signs increased the likelihood of a 
right-side encroachment. It is unlikely that the presence of a 
warning sign itself increases the probability. Rather, it is likely 
that advisory signs are more likely to be present on curves of 
a certain type (i.e., those with sight distance issues, sharper 
curves), and encroachments are also more likely for those 
road types. Additionally, the results suggest that the simple 
presence of curve warning signs does not mitigate roadway 
departures.

The presence of a guardrail decreased the probability of 
a right-side encroachment. The purpose of a guardrail is to 
mitigate the consequences of a driver leaving the roadway 
rather than to keep the driver from leaving the roadway. 
Consequently, a guardrail in and of itself does not mitigate 
roadway departures. The presence of a guardrail may suggest 
to the driver that roadway conditions are less safe, resulting in 
better driver attention. Additionally, few delineation counter-
measures (e.g., chevrons) were present in the curves included 
in the analysis. As a result, a guardrail may provide some delin-
eation of the curve, which provides feedback to the driver 
about the sharpness of the curve.

The probability that a driver would exceed the posted/
advisory speed by 5 mph or more was higher for curves with 
obscured/missing edge lines. Presence of RPMs decreased the 
probability of exceeding the posted/advisory speed by 8 km/h 
and 16 km/h (5 mph and 10 mph). Taken together, these results 
indicate that better curve delineation may allow drivers to 
better gauge upcoming changes in roadway geometry, resulting 
in better speed selection and decreased risk of a roadway depar-
ture, and it may help decrease speed. Delineation counter-
measures include chevrons, the addition of reflective panels to 
existing chevron posts, reflective barrier delineation, RPMs, 
post-mounted delineators, edge lines, and wider edge lines.

The speed models suggest that driver age and upstream speed 
have a significant impact on drivers’ speed within a curve. As a 
result, speed management countermeasures that affect tangent 
speed will also decrease curve speeds. The results also indicate 
that speed management is appropriate to get drivers’ attention 
before entering a curve. Countermeasures specifically targeted 
to reduce speed on curves include dynamic speed feedback 
signs, on-pavement curve warning signs, and flashing beacons.

Limitations

The most significant limitations are sample size and represen-
tation of different curve and driver characteristics. More than 
700 potential curves were initially identified. This represented 
a wide range of roadway characteristics and countermeasures. 
However, some countermeasures, such chevrons and rumble 
strips, were not widely available in the study areas, and some 
countermeasures, such as post-mounted delineators, were not 
available at all. Additionally, only one-third of the full NDS 
data set was available for query at the time the data request 
was made, and data were only found for 148 curves, which 
reduced the number of roadway characteristics that could be 
included. A total of 583 observations were included in the 
analysis. However, only 57 right-side roadway departures and 
40 left-side roadway departures were present.

Another limitation is that crashes/near crashes were not 
available, so the relationship between encroachments or speed 
and roadway departure crash risk could not be established.

Additionally, although a model was developed for left-side 
encroachments, this model is likely to include drivers who cut 
the curve. Although it is difficult to determine driver intent, in 
several cases the driving manner as evidenced in the forward 
videos suggested that the driver was intentionally crossing the 
centerline.
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This chapter discusses the fourth research question: Can lane 
position at a particular state be predicted as a function of posi-
tion in a prior state?

Research Question 4 focuses more specifically on driver 
response to changing roadway characteristics and traffic con-
ditions. Time series models were developed to incorporate 
the dynamic process of information acquisition and response 
as a driver negotiates a curve. The analysis evaluated the influ-
ence of roadway geometries or traffic conditions on drivers’ 
lane-keeping behavior. For example, drivers on a rural two-
lane roadway tend to have larger lane deviation from the center-
line when there is an oncoming vehicle.

Two types of dynamic linear models (DLMs) were built in 
this study to describe and explain the curve negotiation process: 
DLM with intervention analysis and DLM with autoregression 
and moving average (ARMA). The DLM with intervention 
analysis was mainly used for explanatory purposes, which related 
lane offset to curve characteristics and traffic conditions. The 
DLM with ARMA was mainly used for forecasting purposes, 
which could be used for roadway departure warning systems.

It should be noted that Research Question 4 is similar to 
Research Question 2. Research Question 4 uses a different 
statistical method to explore whether driver/vehicle charac-
teristics in one time state during curve negotiation can be 
modeled from previous states using a time series analysis. 
Research Question 4 is included as a separate research ques-
tion to simplify discussion of methodology and results.

The objective of Research Question 4 was to determine the 
feasibility of the approach because there was not sufficient 
time to conduct a full-scale analysis.

Description of analytical 
approach for research 
Question 4

A DLM was used to analyze driver behavior. The DLM can 
account for the autocorrelation of the observations in time. It 
is a flexible model that allows the inclusion of explanatory 

variables and stochastic time components in the same model. 
The explanatory variables can evolve over time. The popu-
lar Box-Jenkins autoregressive integrated moving average 
(ARIMA) model was not used in this study, because the 
underlying process of the Box-Jenkins model is assumed not 
to change over time; driving behavior varies in different road-
way segments with different speed limits, roadway geome-
tries, and weather conditions. The DLM is a better model in 
this case because the model can consistently update the model 
parameters based on the modeling errors in previous steps. In 
other words, the model can evolve over time based on its past 
observations and can be adapted to different situations. The 
general form of DLM can be written as follows:

Observation equation Yt = Ft θt + νt, with νt ~ N1(0, Vt)

State evolution equation θt = Gt θt-1 + ωt, with ωt ~ Np(0, Wt)

Initial prior (θ0 | D0)  ~ N(m0, C0), where (m0, C0) is fixed
and Dt = {Yt, Dt-1}

The model assumes that the underlying state, θt, evolves 
smoothly over time as an autoregressive process and that the 
observation at time, t, is a smooth function of the state. The 
state evolution equation, as formulated above, is a function of 
an underlying process that is unobserved. Explanatory vari-
ables can be included as part of the underlying process driving 
the observation equation by including a linear combination of 
the explanatory variables in the state evolution equation. 
Coefficients Ft and Gt are often assumed to be constant over 
time, but they can also be time dependent.

Data Sampling and 
Segmentation approach  
for research Question 4

One curve in North Carolina was selected that has lane posi-
tion, speed, and pedal position data that were determined to 
be sufficiently reliable for the model. The selected trip is 

Analysis for Research Question 4
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shown in Figure 9.1. The sample curve is a single curve with 
a radius of 1,128 m. The driver was driving from northwest to 
southeast on the outside lane on a rural two-lane highway. 
The speed limit is 55 mph. The trip occurred at night, and 
there was only one oncoming vehicle in this trip.

Variables Used for  
research Question 4

Time series data output by the DAS with additional variables 
added were used for this model. The distance from the left 
wheel to the left lane marking was used as a dependent vari-
able. A positive value for the left distance indicates that the left 
wheel is within the lane; a negative value for the left distance 
indicates that the left wheel crossed the centerline marking. 
The raw data were collected at every 0.1 s but were aggregated 
to the 1-s level for this analysis. The time series plot of the raw 
data for the left distance is shown in Figure 9.2. The plot also 
labels the area of influence under the oncoming vehicle and 
the curve. The figure shows that the vehicle had a larger left 

distance, so it moved away from the centerline when there was 
an oncoming vehicle. In contrast, the vehicle moved closer to 
the centerline when the driver was driving inside the curve.

results for research Question 4

This analysis focused on the use of DLM for intervention 
analysis and forecasting. The next section introduces the 
intervention analysis. The subsequent section focuses on the 
use of DLM for forecasting.

Intervention Analysis with  
Dynamic Linear Model

The objective of DLM is to describe and explain the lane posi-
tion of the vehicle in the curve negotiating process. The pro-
posed model assumes an additive model in which the lateral 
position is the sum of normal driving positions, the lane 
deviation due to the oncoming vehicle, and the lane deviation 
due to the curve. The influence of the oncoming vehicle and 
the curve are introduced into this model as intervention vari-
ables Wv,t and Wc,t, respectively, as follows:
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For t = 1 . . . n, where µt is a stochastic-level variable at time t, 
the model represents the normal driving positions without 
the influence of the oncoming vehicle and the curve. Wv,t is a 
dummy variable with 0 for the absence and 1 for the existence 
of an oncoming vehicle. Wc,t is a dummy variable with 0 for 
outside the curve and 1 for inside the curve. The coefficients 
bv,t and bc,t are the coefficient matrices of these intervention 
effects. The variable et is the random noise in the observa-
tion equation. The model parameters xt, tt, and rt are the 
random noise in the state equations.

Source: World_Street_Map (Esri, DeLorme, NAVTEQ, USGS, Intermap,
iPC, NRCAN, Esri Japan, METI, Esri China [Hong Kong], Esri [Thailand],
and TomTom, 2013). 

Figure 9.1. Sample trip highlighted in ArcGIS.

Figure 9.2. Time series plot of distance of left wheel to left lane marking.
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The model was estimated using maximum likelihood esti-
mation based on the DLM package in R. The predicted mean 
level of the model is plotted in Figure 9.3. This model assumes 
the variance for the state equations (xt, tt, rt) to be zero. In 
this way, the model is forced to fit a straight line for the mean 
effect. The influence of the oncoming vehicle is treated as an 
intervention effect and causes a level shift to a larger left dis-
tance, whereas the curve causes a level shift to a smaller left 
distance, as illustrated in Figure 9.3.

After the model was fitted with the DLM, the model was 
further decomposed into three components: the mean level 
at normal driving, the intervention effect due to an oncoming 

vehicle, and the intervention effect due to the curve. The 
decomposition of each effect allows the evaluation of the 
three components separately, as shown in Figure 9.4.

The top panel in Figure 9.4 illustrates the mean level of 
lane deviation as if there were no intervention effect from the 
oncoming vehicle and the curve. It also represents the mean 
lane position for normal driving conditions, in which the left 
edge of the vehicle is approximately 0.44 m (1.44 ft) from the 
centerline (to the right of the centerline). The middle panel 
shows the influence of an oncoming vehicle on the lane devi-
ation. The positive sign means the vehicle was moving away 
from the centerline for an additional 0.43 m (1.41 ft) (a total 

Figure 9.3. Actual lane deviation versus predicted lane deviation based on DLM.

Figure 9.4. Decomposition of lane deviation data into three components: Stochastic mean effect, lane 
 deviation due to oncoming vehicle, and lane deviation due to curve.
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of 0.77 m to the right of the centerline) to avoid the conflict 
with the oncoming vehicle. The bottom panel illustrates the 
intervention effects of the curve on the lane position. The 
effect of the curve on the lane position is -0.53 m (1.73 ft) to 
the left of the normal driving position, which places the vehi-
cle about 0.09 m (0.30 ft) beyond the centerline (i.e., the left 
edge of the vehicle crosses the centerline by 0.1 m).

Forecasting with Dynamic Linear Model

The second model is a DLM representation of ARMA model. 
The classical ARMA (p, q) process model can be defined as the 
following formula:

∑ ∑= φ + ψ ε + ε−
=

−
=1 1

Y Yt j t j

j

p

j t j

j

q

t

where
 Yt-j = the past observation at time t - j;
 et-j = the error of the model at time t - j; and
	 et = the residual of the model at time t.

This model predicts the future position of the vehicle based 
on the past p number of observations and q number of mod-
eling errors. The best model for this time series data is the 
ARMA (2, 1) model, as follows:

= + + ε + ε− − −0.89 0.06 0.981 2 1Y Y Yt t t t t

The variance of the model residuals is 0.015. The one-step-
ahead prediction with 95% confidence interval is plotted in 
Figure 9.5. The figure shows that 95% of the one-step-ahead 
predictions will fall into this interval. The width of the confi-
dence interval is approximately 0.4 m. The plot shows that the 
model predicted the future observations accurately.

The model fits and residuals were checked with a variety of 
tests. The Q-Q plot and Shapiro-Wilk normality test were used 
to check the normality of the residuals. The Q-Q plot followed 

a straight line, and the p-value for the Shapiro-Wilk normality 
test is 0.56, which is higher than the 0.05 confidence level. 
Therefore, the model satisfies the normality assumption.

The standardized residuals are plotted in Figure 9.6. Most 
of the standardized residuals in the plot are lower than 3, 
which means no significant outlier was detected. Both an 
autocovariance function (ACF) and Ljung-Box statistics were 
used to check the correlations in the residuals. The ACF 
values for all lags are within the limits. The p-values of the 
Ljung-Box statistics are all above 0.05, which indicates no sig-
nificant autocorrelation in the residuals. The forecast of the 
model is also reasonably similar to the actual values. There-
fore, it was concluded that the DLM fit the data well. Again, 
the limitation is that the model can only be used to treat one 
time series data row at a time. The model is also not appropri-
ate to generalize this result to other drivers on other curves.

Summary and Implications

This chapter has described a time series analysis of driver 
behavior on rural two-lane curves using SHRP 2 NDS data. 
DLM was used to analyze driver behavior as a dynamic pro-
cess. Distance from the centerline was chosen as a surrogate 
to represent roadway departure risks. Two types of DLM were 
used to analyze the time series data: DLM with intervention 
analysis and DLM with ARMA for forecasting.

The intervention analysis evaluated the influence of the 
oncoming vehicle and the curve on lane position. The two 
effects were included in the DLM as intervention effects. The 
model was decomposed into three components: the mean 
level of lane position, the lane deviation due to the oncoming 
vehicle, and the lane deviation due to the curve.

This analysis found that the average distance from the 
centerline to the left edge of the vehicle under normal driving 
conditions is approximately 0.44 m (1.44 ft) to the right of 
the centerline. The vehicle moved away from the centerline by 
an additional 0.43 m (1.41 ft) when there was an oncoming 

Figure 9.5. Predicted left distance with 95% confidence interval.
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vehicle (a total of 0.77 m to the right of the centerline). At the 
inside of the curve, the vehicle moved closer to the centerline 
by about 0.53 m (1.73 ft), which placed the left vehicle edge 
across the centerline by 0.09 m (0.30 ft).

However, these findings are based on one sample trip only 
and cannot be generalized to other drivers and curves. The 
overall safety benefit of this finding is arguable. On the one 
hand, larger lane deviation from the centerline increased the 
probability of a roadway departure crash. On the other hand, 
it decreased the likelihood of a head-on collision with an 
oncoming vehicle. Therefore, the overall safety benefits of the 
lane position should be further evaluated and discussed in a 
future study.

The second model, DLM with ARMA, successfully fitted 
the sample trip for forecasting purposes. The diagnostics of the 
model residuals indicated that the fitting is adequate for the 
time series data. The model predicted the future position of 
the vehicle based on the past observations and errors. One-
step-ahead prediction showed that the predicted values are 
very close to the actual observations. The 95% confidence 
interval was also plotted with the forecast values. Therefore, 
the research team concludes that the model fit the data well 

Figure 9.6. Diagnostics of residuals: Standardized residuals, autocovariance function of residuals, and  
p-values for Ljung-Box statistics.

and could potentially be used for roadway departure crash 
warning systems.

The model results are only applicable to the scenarios tested 
and cannot be extrapolated to other drivers or other curves. 
The intent of Research Question 4 was to show proof of con-
cept. However, results suggest that the time series data can be 
used to model driver lateral control as a function of external 
variables (oncoming vehicles, position within the curve). This 
indicates that lane position data from the SHRP 2 NDS that 
are sufficiently reliable could be used in development of colli-
sion warning system algorithms.

It should be noted, however, that the models predicted lane 
position at a high resolution (i.e., 0.09 m). The accuracy of 
offset and other lane position variables has not yet been pub-
lished. The accuracy also depends on the quality of the for-
ward view, quality of lane lines, and other factors. As a result, 
0.1 m (0.3 ft) is likely smaller than the accuracy of the vari-
ables used to calculate position from the lane edge. Therefore, 
whether a vehicle crosses a lane line and the magnitude of the 
crossing should be evaluated cautiously. The results do show 
that the model can be used to predict position and shifting 
position due to external variables.
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Summary

Over half of motor-vehicle fatalities are roadway depar-
tures. Rural horizontal curves are of particular interest 
because they have been correlated with overall increased 
crash occurrence. Although transportation agencies expend 
significant resources to address the problem, the interaction 
between the driver and roadway environment is not well 
understood. As a result, it is difficult to select appropriate 
countermeasures.

To address this knowledge gap, data from the SHRP 2 NDS 
and RID were used to develop relationships between driver, 
roadway, and environmental characteristics and risk of a road 
departure on rural curves. Only curves on rural two-lane 
paved roadways with posted speed limits of 64 km/h to 97 km/h 
(40 mph to 60 mph) were included.

The research was tailored to address four fundamental 
research questions:

1. What defines the curve area of influence?
2. What defines normal behavior on curves?
3. What is the relationship between driver distractions; other 

driver, roadway, and environmental characteristics; and 
risk of roadway departure?

4. Can lane position at a particular state be predicted as a 
function of position in a prior state?

Each question addresses the problem from a different per-
spective; as a result, a different methodology was proposed for 
each, as described in the corresponding sections.

The team identified rural curves of interest using the RID 
and requested time series data from the DAS, which pro-
vided vehicle kinematics (e.g., speed, acceleration) for those 
curves. A forward roadway view was also provided. Vehicle, 
roadway, and environmental data were extracted and used as 

variables in the various analyses. Eyes-off-roadway distrac-
tions and driver glance locations were reduced using the 
driver face and steering wheel video data at the VTTI secure 
data enclave.

Crash surrogates were used because crashes/near crashes 
had not been coded at the time this research was conducted. 
A number of potential crash surrogates were considered 
against the data available and the expected accuracy of rele-
vant variables in the NDS data (e.g., lane position, forward 
radar, vehicle position). Lane offset was the best crash surro-
gate, but lane offset was not reliable in a number of traces. As 
a result, it was used for Research Questions 2 and 4, resulting 
in a smaller sample of data for those research questions.

Because offset was not reliable in a number of traces, it was 
determined that encroachments would be the best crash sur-
rogate for Research Question 3. A right-side encroachment is 
defined as the right side of the vehicle crossing the right lane 
line, and a left-side encroachment is defined as the left side of 
the vehicle crossing the centerline.

Discussion and 
recommendations  
for Countermeasures

Data from the SHRP 2 NDS and RID were used to develop 
relationships between driver, roadway, and environmental 
characteristics and risk of a roadway departure on rural two-
lane curves on paved roadways.

The four research questions addressed the problem from 
different perspectives, and a different methodology was devel-
oped specific to each. The analytical method, data sampling 
and segmentation approach, general variables considered, 
results, and implications are discussed in the corresponding 
sections. In general, the research questions covered three areas: 
curve area of influence, lane position, and speed.

Summary and Recommendations
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Curve Area of Influence

Identifying the curve area of interest was addressed in Research 
Question 1. Regression and Bayesian analyses were used to 
model the point (upstream of the PC) at which the driver 
reacts to the curve. Reaction point was inferred as the point at 
which speed or gas pedal position changed significantly from 
upstream driving.

Results showed that, depending on radius of curve, drivers 
begin reacting to the curve 164 m to 180 m (538.1 ft to 590.6 ft) 
upstream of the point of curvature. Reaction point was com-
pared with sign placement guidelines in the Manual on Uni-
form Traffic Control Devices (Federal Highway Administration 
2009). It was determined these guidelines are appropriately 
set based on where drivers actually react to the curve.

Research Question 1 also found that drivers begin reacting 
to the curve sooner for curves with larger radii than for curves 
with smaller radii. Drivers may not be able to gauge the 
sharpness of the curve, or sight distance issues may be a con-
cern for sharper curves. This suggests that use of counter-
measures, such as chevrons or RPMs, that better delineate the 
curve may provide better advance information for drivers. It 
should be noted that the model only identified where drivers 
reacted to the curve. This research question did not attempt 
to answer whether the reaction point was sufficient for drivers 
to successfully negotiate the curve.

Lane Position

Lane position was modeled in Research Questions 2, 3, and 4. 
Offset from lane position was modeled for normal driving in 
Research Question 2, and probability of a right-side or left-side 
encroachment was modeled in Research Question 3. Research 
Question 4 used time series data to model driver behavior at 
0.1-s intervals based on driver, traffic, and roadway character-
istics. However, the objective of Research Question 4 was to 
demonstrate the utility of the approach, and only limited data 
were used in the analyses.

Several driver factors are related to lane position. Research 
Question 2 found that offset from the center of the lane within 
the curve is influenced by offset upstream of the curve. Results 
from Research Questions 2 and 3 indicate that offset and 
likelihood of an encroachment are correlated to glances away 
from the forward roadway and glances associated with a dis-
traction. Males are more likely to have a left-side encroach-
ment, and younger drivers are more likely to deviate within 
their lane.

Research Question 2 also indicated that offset from the 
center of the lane varies with position with the curve. Research 
Questions 2 and 3 found that behavior differs when driving on 
the inside versus the outside of the curve (from the perspective 

of the driver). Because there are natural variations in posi-
tion along the curve, drivers may be more vulnerable to lane 
departures at certain points in the curve. These results sug-
gest that countermeasures such as rumble strips, paved 
shoulders, and high-friction treatments may ameliorate the 
consequences of variations in lane position through the 
curve.

Several roadway characteristics were correlated to lane posi-
tion. Research Question 2 found that nighttime driving was a 
factor in driver lane position, with offset tending more toward 
the left of the lane center. Results from Research Question 3 
showed a correlation between radius and the probability of 
encroachment, but the effect was small. These results also indi-
cated that drivers were more likely to have a right-side encroach-
ment on curves when an advisory sign was present but less 
likely when a guardrail was present along the curve. It should 
be noted that advisory signs and guardrails are used on certain 
types of curves, and, as such, either may be a surrogate for a 
certain type of curve.

These results suggest that presence of advisory signs do not 
in and of themselves mitigate roadway departures. Addition-
ally, drivers may adjust their speed when the roadway sug-
gests a more dangerous situation (i.e., presence of a guardrail 
suggests an unforgiving roadside environment). Consequently, 
better curve delineation may allow drivers to better gauge 
upcoming changes in roadway geometry, resulting in better 
speed selection and decreased risk of a roadway departure, 
and may help decrease speed. Delineation countermeasures 
include chevrons, the addition of reflective panels to exist-
ing chevron posts, reflective barrier delineation, RPMs, post-
mounted delineators, edge lines, and wider edge lines.

Speed

Driver speed near the curve entry was modeled in Research 
Question 2, and probability of a driver exceeding the advisory 
speed (if present) or posted speed (if not present) by 8 km/h 
and 16 km/h (5 mph and 10 mph) was modeled in Research 
Question 3.

Several driver characteristics were related to speed. Both 
Research Questions 2 and 3 indicated that drivers traveling at 
higher speeds in the tangent section were also likely to speed 
within the curve, and younger drivers and pick-up truck/SUV 
drivers were more likely to speed. Both research questions also 
found that drivers looking away from the roadway had slower 
speeds within the curve.

Several roadway characteristics were correlated to speed. 
Results from Research Question 3 showed that drivers are 
slightly more likely to exceed the curve advisory/posted speed 
limit as radius of curve decreases, but this may be because 
sharper curves have lower advisory speeds. Results also showed 
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that drivers are less likely to speed when paved shoulders or 
RPMs are present. The probability that a driver would exceed 
the posted/advisory speed by 8 km/h (5 mph) or more was 
higher for curves with obscured/missing edge lines.

When roadway characteristics are considered together, 
the results may suggest that appropriate delineation as pro-
vided by RPMs and presence of edge lines may provide cues 
to drivers, allowing them to better gauge the sharpness of 
the curve and select appropriate speeds. Delineation counter-
measures include chevrons, the addition of reflective panels 
to existing chevron posts, reflective barrier delineation, 

RPMs, post-mounted delineators, edge lines, and wider 
edge lines.

The speed models also suggest that driver age and upstream 
speed have a significant impact on drivers’ speed within a 
curve. As a result, speed management countermeasures that 
affect tangent speed will also decrease curve speeds. The model 
also indicates that speed management is appropriate to get 
drivers’ attention before entering a curve. Countermeasures 
specifically targeted to reduce speed on curves include dynamic 
speed feedback signs, on-pavement curve warning signs, and 
flashing beacons.
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A p p e n d i x  A

The methodology used to reduce various roadway data fea-
tures is described in the sections below.

Kinematic Vehicle Factors

Data element: Vehicle position within its lane

Need: Lane position may be the best indicator of when a lane 
departure has occurred. Lane position can also be used to 
determine the magnitude of the lane departure in terms  
of departure angle from the roadway and amount that the 
vehicle encroaches onto the shoulder. Both can be used to set 
thresholds between different levels of crash surrogates.
Potential source for data element: Data can only be obtained 
from lane position tracking algorithms and associated data 
streams such as forward video.
Accuracy: Not yet available from Virginia Tech Transporta-
tion Institute (VTTI).
Resolution: 10 Hz.
Comments: The NDS DAS reports information that can be 
used to establish lane position. Lane-tracking units were 
reported as centimeters in the data dictionary, but a review of 
the first data set indicated this was erroneous. In a follow-up 
conversation with VTTI, it was determined that the units ini-
tially reported are millimeters. The following variables are 
used to calculate lane position (see also Figure A.1):

•	 Lane Position Offset (vtti.lane_distance_off_center): Dis-
tance to the left or right of the center of the lane based on 
machine vision.

•	 Lane Width (vtti.lane_width): Distance between the inside 
edge of the innermost lane marking to the left and right of 
the vehicle. Note that lane width is calculated for each 
0.1-second interval and varies somewhat.

•	 Lane Marking, Distance, Left (vtti.left_line_right_ 
distance): Distance from vehicle centerline to inside of left-
side lane marker based on vehicle-based machine vision.

•	 Distance from vehicle centerline to inside of left-side lane 
marker based on vehicle-based machine vision.

•	 Lane Marking, Distance, Right (vtti.right_line_left_ 
distance): Distance from vehicle centerline to inside of right-
side lane marker based on vehicle-based machine vision.

•	 Lane Marking, Probability, Right (vtti.right_marker_ 
probability): Probability that vehicle-based machine-vision 
lane-marking evaluation is providing correct data for the 
right-side lane markings. Higher values indicate greater 
probability.

•	 Lane Marking, Probability, Left (vtti.left_marker_ 
probability): Probability that vehicle-based machine-vision 
lane-marking evaluation is providing correct data for the 
left-side lane markings.

Offset from lane center and distance from the right lane 
(RD) or left lane (LD) line are the metrics currently being used 
as crash surrogates. RD and LD are calculated as shown in 
Equations A.1 and A.2 (in meters).

2 (A.1)CLL L TD w= − −

2 (A.2)CLR R TD w= −

where
 LD =  distance from left edge of vehicle to left edge of lane 

line; if negative, means left edge of car is to the left of 
the left edge line.

 RD =  distance from right edge of vehicle to right edge of 
lane line; if negative, means right edge of car is to the 
right of the right edge line.

 Tw = vehicle track width.

Data element: Presence and distance 
between subject vehicle and other vehicles

Need: Establish outcome from lane departure; used as a mea-
sure of level of service. Presence of other vehicles (opposing, 

Methodology for Reducing Roadway Data
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vehicles passed) can be used to determine roadway density as 
an exposure method.
Source: Forward video.
Accuracy: ±3 ft (0.914 m).
Resolution: Collected as vehicle was approaching the curve.
Comments: A subjective measure of distance will be obtained 
from the forward video, as shown in Figure A.2, but distance 
cannot be determined. When a conflict occurs, distance to a 
forward or side vehicle will be determined from the forward 
or side radar. However, only vehicles within the radar range 
can be detected.
Coding:
Following
0: No forward vehicle present
1: Forward vehicle present but not following
2: Following closely (less than 3 seconds apart)

Roadway Factors

Data element: Lane width

Need: Independent variable in the statistical analysis; also 
needed to establish vehicle position within its lane.
Source: Mobile mapping when available; lane-tracking sys-
tem (varies significantly over 0.1-second intervals—could 
use average).
Accuracy: Need to determine from mobile mapping and lane 
tracking.
Resolution: At curve approach, PC, apex, PT.
Comments: Lane width is measured by the DAS lane-tracking 
system and will be used when position within the lane is needed.
Coding: LaneWidth, reported in meters.

Data element: Shoulder width

Need: Independent variable in statistical analyses. Shoulder 
and median width also affect potential outcomes for lane 
departures.

Source: Mobile mapping data; may be available from road-
way databases.
Accuracy: ±0.5 ft (0.152 m).
Resolution: At curve approach, PC, apex, PT (should be 
checked at several points but can be reported once).
Comments: Could not be accurately measured from aerial 
images and is therefore not included in initial analysis, as 
mobile mapping data are not available.
Coding:
Paved shoulder width
1: Less than 1 ft
2: 1 ft to less than 2 ft
3: 2 ft to less than 4 ft
4: Greater than or equal to 4 ft

Data element: Curve length and radius

Need: Independent variable in statistical analyses; may also 
be used to assess roll hazard.
Source: Mobile mapping, aerial imagery.
Accuracy: ±25 ft (7.62 m) for curve length and ±10% for 
radius.
Resolution: Once per curve.
Comments: Extracted for each direction and then averaged 
to find one value for each curve.

Figure A.1. Description of variables  
to calculate lane position.

Figure A.2. Subjective measure of vehicle following.

Source: University of Michigan Transportation Research Institute (UMTRI)
Road Departure Crash Warning (RDCW) data set. 

Subject vehicle is closely following forward vehicle.

Subject vehicle is not considered to be following forward vehicle.
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Coding:
Length of curve from PC to PT, reported in meters (Length).
Radius of curve, in meters (Radius).

Data element: Curve superelevation

Need: Independent variable in statistical analyses; may also 
be used to assess roll hazard.
Potential source for data element: Mobile mapping is likely 
the only feasible source.
Accuracy: Maximum superelevation for areas with no ice and 
snow is 12%; for areas with snow and ice the maximum is 8%. 
Given these ranges, ideal accuracy is 0.5%, but it is unknown 
if this accuracy can be practically measured in the field. Under 
normal circumstances cross slope is 1.5% to 2%. Ideally, it 
would be necessary to measure this variable at 0.1% accuracy 
to determine differences, but this may not be practical.
Resolution: Once per curve as reported by the mobile 
mapping.
Comments: SHRP 2 Project S04A data had both negative and 
positive values.
Coding: Extracted once per curve for each lane.
Superelevation, in percent (Super).

Data element: Driving direction

Need: Independent variable in statistical analyses; also impor-
tant for determining the potential outcome of a noncrash lane 
departure.
Source: Aerial imagery and forward view.
Accuracy: NA.
Resolution: Should be indicated once per curve.
Comments: None.
Coding:
Direction of travel (Cardinal)
0: N/S
1: E/W
2: NE/SW
3: NW/SE

Direction of curve from perspective of driver (Direction)
0: Outside/left-hand
1: Inside/right-hand

Data element: Distance to upstream 
curve, distance to downstream curve 
from perspective of driver (meters)

Need: Drivers may negotiate curves differently if they have 
traveled for some distance between curves instead of having 
negotiated a series of curves. Also used as an independent 
variable in statistical analyses.
Source: Aerial imagery.

Accuracy: ±25 ft (7.62 m).
Resolution: Upstream and downstream per curve.
Comments: None.
Coding:
Distance to upstream curve from perspective of driver, in 
meters (DistUP).
Distance to downstream curve from perspective of driver, in 
meters (DistDown).

Curve type
0: Individual curve
1: S-curve (less than 600 ft between subsequent curves)
2: Compound curve (0 ft between 2; the PT and PC of sub-
sequent curves in the same direction)

Data element: Speed limit, curve advisory, 
chevrons, and W1-6 signs

Need: Independent variable in statistical analyses.
Source:

•	 Speed limit and curve advisory speed limit from mobile 
mapping.

•	 Forward video/Google/forward view mobile mapping for 
remaining.

Accuracy: The general location of the sign or an indication 
that the sign is present is adequate. For instance, it would be 
important to know the number and type of chevrons that 
were present on a curve, but it is not necessary to know exactly 
where each sign is located. It is also assumed that all signs are 
compliant with National Cooperative Highway Research Pro-
gram (NCHRP) 350 so that they would not need to be consid-
ered as strikable fixed objects when determining the outcome 
of a lane-departure event. A sign located using a standard GPS 
with accuracy of ±6.6 ft (2 m) would be adequate.
Resolution: As they occur.
Comments: None.
Coding:
Tangent speed limit (SpdLimit), in miles per hour.
Advisory speed (Advisory), in miles per hour, or 999 if no 
advisory speed limit exists.

Presence of chevrons (Chevrons)
0: Not present
1: Present

Presence of curve advisory sign
0: Not present
1: Present

Presence of W1-6 sign
0: Not present
1: Present
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Data element: Number of driveways  
or other access points

Need: Traffic entering and exiting the traffic stream can affect 
vehicle operation. This traffic would be included as an inde-
pendent variable in statistical analyses.
Source: Aerial imagery and forward imagery.
Accuracy: NA.
Resolution: Number in the upstream, curve, and downstream.
Comments: Four-way intersections counted as one cross street.
Coding: Number of driveways at approach, within curve, at exit.
Cross streets (CrossStreets), in points per section through 
length of curve and tangents.
Driveways (Dwys), in driveways per section through length 
of curve and tangents.

Data element: Presence of edge 
or centerline rumble strips

Need: Independent variable in statistical analyses; also needed 
to establish outcome of lane departure.
Source: Forward video and Google Street View.
Accuracy: NA.
Resolution: Curve approach and in curve.
Comments on extracting data from existing data sets: Only 
presence of rumble strip could be extracted, not distance 
from road.
Coding:
Type of rumble strip (RS)
0: No rumble strip present
1: Edge line rumble strips only (see Figure A.3)
2: Centerline rumble strips only
3: Centerline and edge line rumble strips

Data element: Roadway delineation (presence 
of lane lines or other on-roadway markings)

Need: Critical for lane position tracking software; would be 
included as an independent variable in statistical analyses.

Source: Forward view.
Desired accuracy: Data is a quantitative estimate of visibility 
of markings.
Resolution: Once per mile or as situation changes.
Comments: This element needs to be current to driving situ-
ation and can only be extracted from forward imagery. This 
information could be obtained from the UMTRI data set but 
was more difficult with the VTTI data set due to image 
resolution.
Coding:
Presence of raised pavement markings (RPMs)
0: Not present
1: Present

Roadway delineation (Delineation)
0: Highly visible
1: Visible
2: Obscured
3: Not present

Figure A.4 shows an example of a subjective measure.

Data element: Roadway furniture

Need: Necessary to determine how roadside makeup affects 
driving; also how roadway furniture may affect the severity of 
a lane-departure crash.
Source: Forward view.
Accuracy: NA.
Resolution: Once per curve just upstream of PC looking at 
curve ahead for roadway furniture rating; once per curve at 
any location for presence of guardrail.
Coding:
Presence of guardrail
0: Not present
1: Present

Roadway furniture
1: Little to no roadway furniture
2: Moderate roadway furniture
3: Large amount of roadway furniture

Figure A.5 shows an example of a subjective measure.

Data element: Sight distance

Need: The distance at which the curve is first visible will have 
an effect on where a driver reacts to the curve and could play 
a role in lane departures.
Source: Forward view and time series data.
Accuracy: NA.
Resolution: Once per direction per curve.

Source: DAS forward imagery.

Figure A.3. Presence of edge-line-only rumble strips.
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Comments: This was calculated once per curve using the best 
forward video available. At times, night was the only condition 
to assess sight distance of the curve. Timestamp at which curve 
could first be seen was recorded and then used to find corre-
sponding distance upstream in time series data.
Coding: Distance in meters to PC.

environmental Factors

This section summarizes environmental factors necessary to 
address lane-departure research questions, indicates poten-
tial sources in the existing data sets, suggests accuracy and 
frequency needs, and includes comments about the accuracy 
and availability in the existing data sets.

Data element: Roadway surface condition 
(presence of roadway irregularities such 
as potholes)

Need: Independent variable in statistical analyses; may also 
affect potential outcome of lane departure.
Source: Forward or other outward facing video, status and 
frequency of wiper blades, outside temperature if available, 
roadway weather information system (RWIS) data if archived.

Accuracy: Measure is subjective and therefore not applicable.
Resolution: At curve approach, in curve.
Comments: None.
Coding:
Roadway surface condition (PaveCnd)
0: Normal surface condition, no obvious damage present
1: Moderate damage
2: Severe damage, presence of potholes

Figure A.6 shows an example of a subjective measure.

Data element: Environmental conditions such 
as raining, snowing, cloudy, clear (may not 
correspond to roadway surface condition)

Need: Independent variable in statistical analyses; may affect 
sight distance and is related to visibility.
Source: Forward imagery or archived weather information, 
ambient temperature probe.
Accuracy: Subjective measure.
Resolution: Once per vehicle trace.
Comments: A general assessment of environmental condi-
tions can be obtained from the forward video (Figure A.7). 
Even with wiper position, it is difficult to tell how heavy 

Figure A.4. Subjective measure of lane marking condition using forward imagery.

Pavement markings indicated as “highly visible.”

Pavement markings indicated as “visible.”

Right pavement markings indicated as “obscured.”

Source: Forward video and UMTRI RDCW data set.
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Source: DAS forward imagery.

Little to no roadway furniture. 

Moderate roadway furniture.

Large amount of roadway furniture.

Figure A.5. Subjective measure of roadway furniture.

rainfall is. Archived weather information can provide general 
information for an area but cannot tell the exact environ-
mental conditions for the location where the subject vehicle 
is located.
Coding:
Roadway surface condition (Surface)
0: Dry pavement surface
1: Pavement wet but not currently raining
2: Wet and light rain
3: Wet and heavy rain
4: Snow present but road is bare
5: Snow along road edge and/or centerline
6: Light snow on roadway surface
7: Roadway surface covered

Data element: Ambient lighting

Need: Independent variable in statistical analyses.
Source: Derived from sun angle, twilight, and forward view.
Accuracy: Subjective measures.
Resolution: Once per trace or as conditions change.
Comments: A relative estimate of ambient lighting can be 
obtained in most cases from the forward imagery. The limita-
tions are that it was difficult during high cloud cover or low 
visibility to subjectively estimate ambient lighting.
Coding:
Ambient lighting (Lighting) time of day and lighting
0: Daytime
1: Dawn/dusk



67   

Figure A.6. Subjective measure of roadway 
pavement surface condition using forward imagery.

Pavement condition indicated as “normal.”

Pavement condition indicated as “moderate.”

Source: DAS forward imagery.

Figure A.7. Pavement surface condition from forward imagery.

 

Pavement surface condition: snow present but roadway bare. 

 Pavement surface condition: wet but amount of water cannot be determined. 

Surface irregularities. 

Source: UMTRI RDCW data set.

2: Nighttime, no lighting
3: Nighttime, lighting present

Data element: Visibility

Need: Independent variable in statistical analyses; serves as 
a measure of sight distance and can also indicate surface 
conditions.
Source: Forward view is the only reasonable data source.
Accuracy: Subjective variable.
Resolution: Once per trace.
Comments: This element is available from forward imagery. 
In some cases it may be difficult to tell whether visibility or 
image resolution causes securement, as shown in Figure A.8. 
The source of decreased visibility could not be determined. 
Low visibility is shown in Figure A.9, but it is unknown if the 
source is fog, smoke, or dust.
Coding:
Visibility
0: Clear
1: Reduced visibility
2: Low visibility
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Source: DAS forward imagery.

Figure A.8. Reduced visibility may be due to sun 
angle or image resolution.

Figure A.9. Low visibility appears to be due to fog.

Source: DAS forward imagery.

exposure Factors

This section summarizes exposure factors necessary to address 
lane-departure research questions, indicates potential sources 
in the existing data sets, suggests accuracy and frequency needs, 
and includes comments about the accuracy and availability in 
the existing data sets.

Data element: Density

Need: Exposure measure.
Source: Forward video.

Accuracy: NA.
Resolution: Number of vehicles on approach, within curve, 
at exit.
Comments: The number of oncoming vehicles, vehicles 
passed by the subject vehicle, or vehicles that the subject 
vehicle passes can be counted using the forward and 
side imagery. Density can be calculated knowing the num-
ber of vehicles encountered over a specific distance. Den-
sity is a good measure of roadway level of service. However, 
counting vehicles in the forward or side imagery is time- 
consuming.
Coding: Number of vehicles passing subject vehicle during 
period (Density), in vehicles per meter, calculated through 
curve.
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A p p e n d i x  B

Additional coding of the video data for each of the rural road 
curve segments was completed by the University of Iowa. 
This was done to collect the following information:

•	 Passenger presence and environmental conditions;
•	 Eyeglance location, frequency, and duration; and
•	 Driver distraction.

Because of the identifiable nature of the video data, all cod-
ing was completed at Virginia Tech Transportation Institute’s 
(VTTI) secure data enclave. VTTI has many procedures in 
place to ensure that the SHRP 2 data are protected and only 
used for the purpose that was specified in the data plan. Spe-
cifically, all researchers who enter the enclave are required to 
use a passcode and leave all electronics outside, all materials 
are examined when researchers leave the enclave to ensure 
that data are not removed, and a proctor is scheduled to be in 
the room whenever a researcher is present.

Initial video coding was done by examining the occupancy 
snapshot available for a particular event. From that frame, the 
research team coded front and rear passenger presence as well 
as environmental conditions (e.g., light, weather, road sur-
face). For some events, the quality of the video or the size and 
position of the passenger made this difficult. With only a sin-
gle frame, the reviewers cannot see movement that could be 
attributed to passengers. The lack of audio excludes another 
way of identifying passenger presence. On several occasions it 
was necessary to view additional snapshots that might have 
occurred outside the event but during the same drive in order 
to see if different lighting conditions or passenger position 
within the vehicle would make that information obtainable.

eyeglance data

Driver eyeglance data were coded beginning at the straight-
away leading up to the curve and ending at a certain point 
beyond the curve. These data were coded frame by frame at 
approximately 10 Hz using Virginia Tech’s Hawk-I software. 

Table B.1 shows the eyeglance locations and the rules associ-
ated with how the glances were defined and applied.

Eyeglance data coding under naturalistic driving condi-
tions was challenging for a number of reasons:

•	 Bright sunlight caused the camera to “wash out” the entire 
face, especially at certain times of the day when the sun-
light was more direct. External light sources at night, such 
as street lights, created the same effect.

•	 Night videos had a grainy quality, making it difficult to dis-
cern the driver’s eye from the rest of the view. It was thought 
that this might have been caused by the artificial light created 
by the infrared light on the camera.

•	 Many drivers wear sunglasses, as well as prescription glasses, 
both of which create problems associated with glare.

These problems were not unexpected and do not make the 
videos as a whole uncodable. In many cases when the driver’s 
eye is not visible, a dark spot indicating the pupil can be seen 
and used for coding. Head movements were also used to aid in 
the coding of some eyeglances. And glare and other problems 
associated with sunlight change as the direction of the vehicle 
changes.

One challenge the research team encountered that was 
unexpected was the discontinuous camera view. As research-
ers coded, they found that the camera zoomed in and out to 
get the best possible view of the driver’s eyes. Therefore, the 
distance of the eyes from the camera varied among drivers 
and even within events. While this function was intended to 
be helpful, in many cases, it did not improve the view and in 
fact made it harder to remain consistent in the coding.

driver distraction

Visual distractions are those that cause the driver to take their 
eyes off the roadway. Table B.2 lists the distractions coded for 
this study and some of the eyeglance locations that might 
have been associated with that distraction. Pairing this with 

Data Reduction Method for Coding  
Driver Glance Location and Distraction
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Table B.2. Potential Distractions Associated with Eyeglances

Distraction Probable Glance Locations Situation

Passenger Right (front-seated passenger), 
rearview mirror, or over the 
shoulder (rear-seated passenger)

A glance associated with a front- or rear-seated passenger with indica-
tion of a conversation or other distracting activity. The glance location 
depends on the seating position of the passenger.

Route planning (locating, 
viewing, or operating)

Steering wheel, down, center 
console

A glance associated with the actions performed during the use of a 
paper map or in-vehicle navigation system. The glance location 
depends on where the driver holds the instrument while looking at it.

Moving or dropped object in 
vehicle

Down A glance associated with the driver reaching for something in the vehi-
cle. The glance location depends on the location of the object.

Animal/insect in vehicle All locations are possible A glance associated with the driver being preoccupied by the presence 
of an animal/insect and taking action to remedy the distraction. The 
mere presence is not to be coded as a distraction. The glance loca-
tion depends on where the animal/insect is located in the vehicle.

Cell phone (locating, viewing, 
operating)

Steering wheel, down, center 
console

A glance associated with the actions performed during cell phone use. 
The glance location depends on where the driver holds the phone 
while looking at it.

IPod/MP3 (locating, viewing, 
operating)

Steering wheel, down, center 
console

A glance associated with the actions performed during the use of an 
in-vehicle entertainment system. The glance location depends on 
the location of the device.

In-vehicle controls Center console, steering wheel, 
down

A glance associated with the actions performed using the in-vehicle 
controls (e.g., HVAC, radio, CD player, wipers, windows, door locks). 
The glance location depends on the control being activated.

Drinking/eating Steering wheel, down A glance associated with locating/adjusting food item or drink con-
tainer. The glance location depends on where the driver is holding 
the food/drink.

Table B.1. Eyeglance Coding Rules

Location of Eyeglance Coding Rule

Forward Gazes to the center, left, or right that involve little or no head movement and appear to be mostly directed to the 
left or right portions of the windshield should be coded as “Forward.”

Center console Eyes move slightly down and to the right. There is little or no head movement (e.g., HVAC, radio).

Steering wheel Eyes move down slightly. There is little or no head movement (e.g., speedometer, fuel gauge, cruise control).

Down Draw an imaginary horizontal line in the middle of the steering wheel. If a gaze is directed above the line it should 
be coded as “Steering wheel” or “Center console.” If it is below that line, it should be coded as “Down.” Some 
head movement is associated with a “Down” glance (e.g., looking at something in lap or on floor).

Up Eye movement to the upper-left or upper-central portion of the windshield should be coded as “Up.” This glance is 
rare and is usually associated with the visor or sunroof, if present.

Left Any gazes to the left of the A-pillar should be coded as “Left” whether the driver is looking at the left mirror or out 
the driver’s side window.

Right Any gazes that involve both eye and head movement to the right should be coded as “Right” whether the driver is 
looking at the right mirror, glove box, front-seated passenger, or out the passenger’s side window.

Rearview mirror Eye movements up and to the right with a slight head movement should be coded as “Rearview mirror.” These 
include scanning the roadway behind the vehicle, as well as glances to the rear-seated passengers.

Over the shoulder Any glance over the left or right shoulder of the driver. This movement requires the driver’s eyes to pass the B-pillar.

Other Blinks, squints, or closed eyes that last more than 10 frames. Any blinks, squints, or closed eyes less than that 
should be disregarded.

Missing Code as “Missing” if
•	 The eyes are obscured or obstructed for more than 10 frames.
•	 The video freezes or video signal is dropped.
•	 The locus of gaze cannot be inferred because of glare, excessive head movement, or camera location.

(continued on next page)
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the frame-by-frame eyeglance data allowed researchers to 
determine not only the duration of the glance but the cause.

Manual distractions are those that require the driver to 
take a hand off the steering wheel to perform a task unrelated 
to driving the vehicle. In most cases, these distractions were 
identifiable and codable using the video data. These distrac-
tions include drivers rubbing their nose, twirling their hair, or 
holding a phone to their ear. In most cases, drivers performed 
these actions without ever taking their eyes off the road. Time 
constraints did not allow researchers to code these data frame 
by frame. However, they were noted in the data file.

Cognitive distractions, in which drivers’ attention shifts 
away from the task of driving, are not easily coded using 
naturalistic driving data. For this particular study, some of 
the difficulties stemmed from not having sound or a view 
of the passengers. Without these, it was not possible to 
determine whether conversations (phone or personal) were 
occurring in the vehicle. Even if the researcher could see 
that the driver’s mouth was moving, it was not possible to 
discern whether he or she was singing, talking to himself or 
herself, conversing with a passenger, or using a hands-free 
phone.

Smoking Steering wheel, down, center con-
sole, left

A glance associated with locating, lighting, smoking, or disposing of 
ashes. The glance location depends on where the driver holds the 
cigarette and where he or she discards the ashes.

Personal hygiene Up, rearview mirror, steering wheel, 
down

A glance associated with the driver performing an action related to 
personal hygiene (e.g., fixing hair, applying makeup, blowing nose). 
The glance location depends on the activity the driver is performing.

Other task Any are possible A glance not fitting another category (make a note if used).

Table B.2. Potential Distractions Associated with Eyeglances (continued)

Distraction Probable Glance Locations Situation



72

A p p e n d i x  C

Curve Area of Influence Model Results

Table C.1. Model Output for Speed Change Points

Curve_ID Radius beta0 beta1 beta2 ChangePoint p-value

IN13Ain 1910 31.4746 0.0137 -0.009 -271.5092 <0.0001

IN13Ain 1910 25.215 7.00E-04 -0.0027 -110.6764 0.02757711

IN13Aout 1910 23.7545 -0.0026 0.0063 -286.1063 <0.0001

IN13Aout 1910 23.9949 -0.005 0.0126 -126.195 <0.0001

IN13Aout 1910 27.4545 0.0011 -0.0041 -323.8188 <0.0001

IN13Aout 1910 24.9573 -2.00E-04 0.0038 -243.2865 <0.0001

IN13Bin 3862 24.9795 -1.00E-04 -0.0027 -184.6962 <0.0001

IN13Bin 3862 25.6622 5.00E-04 -0.0059 -98.4718 <0.0001

IN13Bin 3862 26.85 0.0014 -0.0068 -76.0516 <0.0001

IN13Bin 3862 25.2465 -9.00E-04 -0.002 -185.9717 <0.0001

IN1Ain 3977 23.9963 0.0033 -0.0083 -96.2083 <0.0001

IN1Ain 3977 0.2778 0 0 -408.4287 <0.0001

IN1Bout 1196 21.066 -0.0066 0.0141 -135.2823 <0.0001

IN3Aout 7106 26.3457 -3.00E-04 -0.0855 -131.2403 0

IN3Aout 7106 24.8481 -0.0084 0.0084 -84.6043 <0.0001

IN3Aout 7106 24.7021 0.0062 -0.0218 -62.822 <0.0001

IN3Bout 5994 26.6667 0 -0.2083 -2.6667 0

IN3Bout 5994 28.2097 0.0048 -0.0099 -115.7904 <0.0001

IN3Bout 5994 26.42 0.0038 -0.0042 -75.734 0.01257546

IN3Cin 1950 20.6077 -0.0134 0.017 -266.528 <0.0001

IN3Cin 1950 -88.3059 -0.2809 0.2799 -403.1271 0.23788383

IN3Cin 1950 25.2396 0.0059 -0.0062 -206.1128 <0.0001

IN44Ain 2703 28.3537 0.0058 -0.0127 -276.1865 <0.0001

IN44Ain 2703 25.8797 0.0041 -0.012 -58.0099 <0.0001

IN44Ain 2703 26.8077 -3.00E-04 -0.0126 -76.1235 <0.0001

IN44Cout 2181 23.3964 -0.0096 0.0157 -192.072 0

IN44Cout 2181 24.3886 -0.0052 0.0061 -218.0717 <0.0001

(continued on next page)
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Table C.1. Model Output for Speed Change Points (continued)

Curve_ID Radius beta0 beta1 beta2 ChangePoint p-value

IN44Cout 2181 26.7444 7.00E-04 -0.0068 -230.1197 <0.0001

IN44Cout 2181 25.6731 -0.009 0.0067 -85.4777 0

IN44Dout 1527 24.5603 -0.0049 -0.0222 -147.004 0

IN44Dout 1527 27.132 0.0038 -0.0173 -192.4604 <0.0001

IN44Dout 1527 26.748 -1.00E-04 -0.0325 -61.5033 <0.0001

IN44Fout 1490 24.6346 0.0013 -0.0069 -234.6482 <0.0001

IN44Fout 1490 25.2072 0.0056 -0.0079 -105.4487 <0.0001

IN44Fout 1490 25.484 0.003 -0.0119 -63.7031 <0.0001

IN44Fout 1490 25.7215 -0.0029 -0.0061 -168.0645 <0.0001

IN44Gin 5142 21.1746 0.005 -0.0135 -99.9366 <0.0001

IN44Gin 5142 26.4831 0 -0.0057 -80.0375 <0.0001

IN44Gin 5142 27.8004 0.0041 -0.0101 -298.2119 <0.0001

IN44Iout 2428 23.2586 -0.008 0.0079 -265.9376 <0.0001

IN44Iout 2428 19.6469 -0.0126 0.0215 -271.0077 <0.0001

IN44Iout 2428 23.7188 -0.0046 0.0152 -279.501 <0.0001

IN44Iout 2428 27.2782 0.0039 0.0013 -100 <0.0001

IN44Jout 1971 15.5089 -0.0138 0.0495 -84.071 <0.0001

IN44Jout 1971 24.3301 -0.0057 0.0044 -170.6553 <0.0001

IN44Jout 1971 24.0206 -0.0058 0.0107 -117.4916 <0.0001

IN44Kout 2051 28.3407 -0.0027 -0.0097 -268.0207 <0.0001

IN44Kout 2051 25.8547 -0.0015 -0.0067 -159.2281 <0.0001

IN44Kout 2051 21.3862 -0.0167 0.0175 -269.2508 <0.0001

IN44Kout 2051 25.4666 -0.0038 -0.0074 -117.0499 <0.0001

IN7Aout 1994 26.008 0.0052 -0.0229 -66.2461 <0.0001

IN7Aout 1994 31.7183 0.0113 -0.0148 -239.1769 <0.0001

NC16Ain 1551 22.3767 0.0035 -0.0077 -90.8977 <0.0001

NC16Ain 1551 19.7161 -2.00E-04 -0.0066 -42.009 <0.0001

NC16Cout 2053 15.531 -0.0101 0.0209 -264.3996 0

NC16Cout 2053 20.4671 0.0031 -0.3243 -2.4041 0

NC16Din 2117 24.7885 0.0089 -0.011 -388.8707 <0.0001

NC16Din 2117 22.1162 0.0044 -0.0073 -230.1436 <0.0001

NC3Ain 1129 24.6616 -0.0049 0.02 -78.9852 <0.0001

NC3Ain 1129 19.6051 -0.0093 0.0067 -359.9583 0.49582818

NC3Ain 1129 26.873 0.0041 -0.0099 -101.9631 <0.0001

NC3Ain 1129 27.5885 0.001 -0.0456 -13.7497 0.00010601

NC3Ain 1129 31.115 0.0135 -0.0169 -306.7835 <0.0001

NC3Ain 1129 27.7387 0.0076 -0.0117 -155.9568 <0.0001

NC3Aout 1129 28.384 -0.0014 -0.0052 -121.5323 <0.0001

NC3Aout 1129 28.0548 0.0013 -0.0148 -193.4051 <0.0001

(continued on next page)
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Table C.1. Model Output for Speed Change Points (continued)

Curve_ID Radius beta0 beta1 beta2 ChangePoint p-value

NC3Aout 1129 28.9097 0.0043 -0.0104 -226.9498 <0.0001

NC3Aout 1129 30.4472 0.0054 -0.0301 -66.6559 <0.0001

NC3Aout 1129 27.8477 0.0022 -0.0198 -68.3807 <0.0001

NC3Aout 1129 29.4495 0.0047 -0.0179 -84.8276 <0.0001

NC7Ain 1994 25.4649 0.0019 -0.0104 -106.7491 <0.0001

NC7Ain 1994 25.3715 0.0031 -0.0141 -159.2339 <0.0001

NC7Cin 723 24.5092 0.0162 -0.0242 -103.2604 <0.0001

NC7Cin 723 21.0862 -0.0022 -0.0273 -36.3002 <0.0001

NC7Eout 2153 22.9851 0.0067 -0.0383 -23.8492 <0.0001

NC7Eout 2153 24.0844 0.0034 -0.011 -75.2521 <0.0001

NC7Fin 963 27.7699 0.0096 -0.0148 -245.5055 <0.0001

NC7Fin 963 25.666 0.0061 -0.0189 -278.1089 <0.0001

NY18Ain 1718 21.7288 -0.0014 0.0112 -209.5014 <0.0001

NY18Ain 1718 31.2833 0.0204 -0.025 -306.2746 0

NY18Cin 2892 23.5163 -0.0054 0.0108 -252.1221 0

NY18Cin 2892 24.6396 -0.0078 0.0095 -223.4709 <0.0001

NY18Cin 2892 24.1158 -0.0013 0.0145 -160.5519 0

NY18Cin 2892 21.2281 -0.0106 0.0121 -292.4173 0

NY18Cin 2892 24.7382 -0.0011 -0.0021 -44.7614 <0.0001

NY18Cin 2892 24.5923 -1.00E-04 -0.0069 -64.6186 <0.0001

NY18Cin 2892 22.8488 -0.0031 0.0068 -260.3266 0

NY18Cin 2892 21.7511 -0.0036 0.0092 -101.4367 <0.0001

NY23Ain 6291 9.3436 -0.044 0.1136 -166.1236 <0.0001

NY23Ain 6291 23.5102 0.0028 -0.0319 -38.045 <0.0001

NY23Aout 6291 28.6649 0.008 -0.015 -235.6528 <0.0001

NY23Aout 6291 23.7078 -0.0023 0.0045 -242.8928 <0.0001

NY52Aout 1876 21.3175 -0.0082 0.0065 -281.4522 <0.0001

NY52Aout 1876 24.4018 -0.011 0.0181 -414.73 <0.0001

NY52Cin 1523 25.6515 0.0063 -0.011 -46.9281 <0.0001

NY52Cin 1523 26.7531 0.0096 -0.0325 -54.2924 <0.0001

NY52Cout 1523 29.8229 0.0072 -0.0072 -247.4987 <0.0001

NY52Din 1378 28.7769 0.0034 -0.0034 -48.5786 0.0005265

NY52Dout 1378 24.0518 -3.00E-04 0.0029 -128.0449 <0.0001

NY52Dout 1378 27.5435 0.0088 -0.7233 -3.1323 <0.0001

NY60Ain 1218 22.4699 0.0067 -0.0129 -261.8548 <0.0001

NY60Ain 1218 18.5039 -0.0018 -0.0055 -222.1382 <0.0001

NY62Aout 1926 31.6968 0.0166 -0.0172 -282.006 0

NY62Aout 1926 25.229 0.0055 -0.017 -239.5048 0

NY63Aout 1357 21.361 0.0044 -0.0147 -179.1604 <0.0001

(continued on next page)
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Table C.1. Model Output for Speed Change Points (continued)

Curve_ID Radius beta0 beta1 beta2 ChangePoint p-value

NY63Aout 1357 22.5121 -9.00E-04 -0.0066 -233.9469 <0.0001

NY63Aout 1357 20.4114 -0.0027 0.0115 -53.5696 <0.0001

NY63Aout 1357 26.7932 0.0161 -0.0193 -317.9716 <0.0001

NY63Aout 1357 22.8013 0.0064 -0.0059 -246.838 <0.0001

NY63Aout 1357 18.757 -0.0011 0.0073 -117.4594 0.00010972

NY65Ain 828 16.6772 -0.014 0.011 -218.7262 <0.0001

NY65Ain 828 21.3056 -3.00E-04 0.009 -46.6096 <0.0001

NY65Aout 828 28.5619 0.0152 -0.0245 -306.3977 <0.0001

NY65Aout 828 21.645 5.00E-04 0.0011 -299.0026 0.43003242

NY65Aout 828 20.8963 1.00E-04 0.0042 -75.7239 <0.0001

NY65Bin 1175 21.9469 -0.0015 -0.0058 -75.7584 <0.0001

NY65Bin 1175 18.0093 -0.0108 0.0152 -216.5231 <0.0001

NY65Bin 1175 22.2093 0.0067 -0.0176 -35.1011 <0.0001

NY65Bout 1175 18.1746 -0.0017 0.0092 -91.2507 <0.0001

NY65Bout 1175 18.1807 -0.0037 0.0116 -105.0212 <0.0001

NY67Aout 117 19.169 -0.0015 -0.0674 -86.9569 <0.0001

NY67Aout 117 20.0644 -0.0023 -0.0527 -102.7345 0

NY67Aout 117 19.0129 -0.0023 -0.0609 -94.651 <0.0001

NY67Aout 117 19.9117 -0.0049 -0.0523 -100.2466 0

NY67Aout 117 20.4601 -0.004 -0.1246 -57.6928 0

NY67Aout 117 19.0357 7.00E-04 -0.0612 -149.5927 <0.0001

NY67Aout 117 18.0293 -0.0041 -0.0723 -85.5433 <0.0001

Table C.2. Model Output for Pedal Change Points

Curve_ID Radius beta0 beta1 beta2 ChangePoint p-value

IN13Ain 1910 16.2573 -0.0047 -0.045 -83.7498 0.00060469

IN13Ain 1910 19.1604 -0.0013 0.0246 -102.4196 0.03682925

IN13Aout 1910 34.43 0.0333 -0.1058 -202.66 <0.0001

IN13Aout 1910 27.3095 0.042 -0.0705 -271.0789 <0.0001

IN13Aout 1910 -0.6262 -0.0614 0.0982 -254.6267 0

IN13Aout 1910 34.6946 0.0341 -0.1178 -180.0157 0

IN13Bin 3862 19.3653 0.0019 0.0607 -133.6037 0

IN13Bin 3862 8.8224 -4.00E-04 0.0227 -302.1735 <0.0001

IN13Bin 3862 12.5853 -0.08 0.1146 -81.0016 <0.0001

IN13Bin 3862 21.6542 0.0081 0.0626 -115.9072 <0.0001

IN1Ain 3977 7.1324 -0.0376 0.0936 -36.267 <0.0001

IN1Ain 3977 46.1968 0.0575 -0.1781 -202.7759 <0.0001

IN1Bout 1196 27.2941 0.0417 -0.1661 -88.1225 <0.0001

(continued on next page)
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Table C.2. Model Output for Pedal Change Points (continued)

Curve_ID Radius beta0 beta1 beta2 ChangePoint p-value

IN3Aout 7106 0.7931 -0.0649 0.8892 -13.5572 <0.0001

IN3Aout 7106 -40.011 -0.1912 0.206 -281.5269 <0.0001

IN3Aout 7106 79.6819 0.1345 -0.1912 -308.8656 <0.0001

IN3Bout 5994 14.7636 0.0137 -0.0633 -106.6624 <0.0001

IN3Bout 5994 8.3226 -0.0381 0.1261 -70.6715 <0.0001

IN3Bout 5994 26.2856 0.0094 -0.0114 -151.2468 <0.0001

IN3Cin 1950 14.7162 0.0178 -0.0445 -166.0595 <0.0001

IN3Cin 1950 537.62 1.2923 -1.3111 -404.0769 <0.0001

IN3Cin 1950 37.7549 0.0363 -0.069 -296.7558 <0.0001

IN44Ain 2703 12.9683 -0.0645 0.1067 -181.1062 <0.0001

IN44Ain 2703 60.5642 0.076 -0.1224 -257.0432 <0.0001

IN44Ain 2703 30.6345 -0.011 -0.1332 -68.529 <0.0001

IN44Cout 2181 24.0248 -0.02 0.0434 -275.9222 0.0003697

IN44Cout 2181 23.8753 -0.0018 0.6534 -18.0016 <0.0001

IN44Cout 2181 130.6829 0.297 -0.342 -349.2169 <0.0001

IN44Cout 2181 14.2234 -0.0412 0.052 -179.9629 <0.0001

IN44Dout 1527 53.4996 0.0721 -0.1598 -219.2371 <0.0001

IN44Dout 1527 111.2334 0.2086 -0.3412 -259.2163 <0.0001

IN44Dout 1527 49.3589 0.0343 -0.2503 -140.8022 <0.0001

IN44Fout 1490 20.8767 -0.0398 0.0754 -160.7445 <0.0001

IN44Fout 1490 49.8587 0.0753 -0.1029 -265.3079 <0.0001

IN44Fout 1490 21.5665 -0.003 -0.0454 -131.8775 <0.0001

IN44Fout 1490 19.5188 -0.0216 0.027 -131.8601 <0.0001

IN44Gin 5142 35.376 0.0223 -0.0882 -222.0049 <0.0001

IN44Gin 5142 29.7204 -0.0039 -0.0401 -182.4526 0.0021038

IN44Gin 5142 12.9394 -0.0506 0.0368 -179.0259 0.00012747

IN44Iout 2428 -125.095 -0.3834 0.4156 -377.9875 <0.0001

IN44Iout 2428 25.0592 0.0199 0.3407 -22.5356 <0.0001

IN44Iout 2428 35.9075 0.0676 -0.0925 -177.8053 <0.0001

IN44Iout 2428 32.3482 0.0341 -0.0324 -185.3678 <0.0001

IN44Jout 1971 -4.1763 -0.1128 0.243 -183.2947 <0.0001

IN44Jout 1971 32.0948 -0.0097 -0.0553 -172.3349 <0.0001

IN44Jout 1971 41.634 0.0231 -0.0729 -254.8227 <0.0001

IN44Kout 2051 24.3978 -0.0155 0.0431 -224.8909 <0.0001

IN44Kout 2051 52.5632 0.0889 -0.0859 -303.1924 <0.0001

IN44Kout 2051 43.4282 0.0958 -0.0759 -175.2404 <0.0001

IN44Kout 2051 30.4323 0.0186 -0.0532 -132.7226 <0.0001

IN7Aout 1994 11.1807 0.0132 -0.0729 -95.7053 <0.0001

IN7Aout 1994 2.5765 -0.0628 0.0815 -180.6707 <0.0001

(continued on next page)
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Table C.2. Model Output for Pedal Change Points (continued)

Curve_ID Radius beta0 beta1 beta2 ChangePoint p-value

NC16Ain 1551 23.5 0 0.1159 -69.2133 <0.0001

NC16Ain 1551 43.5073 0.2449 -0.215 -75.4886 <0.0001

NC16Cout 2053 -309.0423 -0.7841 0.8808 -391.1233 <0.0001

NC16Cout 2053 11.7584 -0.013 0.1921 -48.3185 <0.0001

NC16Din 2117 11.1766 -0.0273 0.0447 -409.3794 <0.0001

NC16Din 2117 30.0628 0.0095 -0.2398 -71.3046 <0.0001

NC3Ain 1129 -32.209 -0.1805 0.3179 -232.3429 <0.0001

NC3Ain 1129 11.9322 0.0188 -0.1412 -61.2861 <0.0001

NC3Ain 1129 21.9174 0.0251 -0.0964 -163.3337 <0.0001

NC3Ain 1129 15.4312 0.0128 -0.3152 -35.7398 0.02054192

NC3Ain 1129 -32.6403 -0.1551 0.1419 -290.0104 <0.0001

NC3Ain 1129 14.0962 -0.009 -0.1668 -67.2934 0.00199844

NC3Aout 1129 20.0111 0.0065 0.1578 -109.63 <0.0001

NC3Aout 1129 1.4423 -0.0315 0.1909 -120.2512 <0.0001

NC3Aout 1129 8.4504 -0.0085 0.3792 -56.5933 <0.0001

NC3Aout 1129 29.9055 0.0432 -0.1855 -133.5346 <0.0001

NC3Aout 1129 -30.7789 -0.1224 0.1505 -321.0941 <0.0001

NC3Aout 1129 9.7035 -0.0142 0.3241 -52.322 <0.0001

NC7Ain 1994 26.0824 0.0146 -0.0962 -86.5459 <0.0001

NC7Ain 1994 21.2397 -0.0057 -0.0085 -141.8584 0.07829868

NC7Cin 723 15.9173 -0.0737 0.1867 -32.0757 0.00014077

NC7Cin 723 30.6289 0.0455 -0.1286 -126.5949 <0.0001

NC7Eout 2153 56.6284 0.0976 -0.1007 -332.1445 0.00036162

NC7Eout 2153 19.5064 -0.0098 0.139 -25.5921 0.00927958

NC7Fin 963 35.9203 0.0469 -0.107 -169.5773 <0.0001

NC7Fin 963 24.3556 0.0149 -0.0988 -80.2646 <0.0001

NY18Ain 1718 61.9878 0.1793 -0.2703 -143.3261 <0.0001

NY18Ain 1718 20.862 -0.0043 0.0266 -292.4055 <0.0001

NY18Cin 2892 37.0391 0.068 -0.0924 -205.5335 <0.0001

NY18Cin 2892 -48.2932 -0.1681 0.1868 -366.4744 <0.0001

NY18Cin 2892 41.4428 0.0857 -0.0857 -51.8138 <0.0001

NY18Cin 2892 70.4704 0.183 -0.1682 -291.5517 <0.0001

NY18Cin 2892 28.5348 0.0368 -0.0562 -313.1313 <0.0001

NY18Cin 2892 77.3089 0.1682 -0.2293 -295.2785 <0.0001

NY18Cin 2892 32.7137 0.0489 -0.0536 -225.2202 <0.0001

NY18Cin 2892 -1.4477 -0.0479 0.1792 -160.5595 <0.0001

NY23Ain 6291 46.0066 0.0698 -0.2437 -136.4026 <0.0001

NY23Ain 6291 18.4296 0.0373 -0.1169 -154.7899 <0.0001

NY23Aout 6291 9.9476 -0.0427 0.0876 -102.9699 <0.0001

(continued on next page)
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Table C.2. Model Output for Pedal Change Points (continued)

Curve_ID Radius beta0 beta1 beta2 ChangePoint p-value

NY23Aout 6291 209.9175 0.4586 -0.4587 -382.2663 0.00455376

NY52Aout 1876 33.6434 0.0844 -0.1067 -39.7973 <0.0001

NY52Aout 1876 84.922 0.0013 -0.0695 -419.8028 <0.0001

NY52Cin 1523 14.2028 -0.0189 0.0776 -200.6215 <0.0001

NY52Cin 1523 67.2325 0.0671 -0.3284 -134.6353 <0.0001

NY52Cout 1523 -71.4701 -0.4301 0.3824 -220.8667 <0.0001

NY52Din 1378 3.1357 -0.0456 0.0462 -179.0635 <0.0001

NY52Dout 1378 50.6786 0.0738 -0.2036 -141.275 0

NY60Ain 1218 48.8336 0.1109 -0.1335 -321.1955 <0.0001

NY60Ain 1218 50.5367 0.1285 -0.1252 -322.8089 0.00316051

NY62Aout 1926 -164.294 -0.5037 0.5336 -387.2163 <0.0001

NY62Aout 1926 18.7174 0.0293 -0.0174 -265.1532 <0.0001

NY63Aout 1357 25.2929 0.026 -0.0513 -243.7218 <0.0001

NY63Aout 1357 15.7151 -0.0024 -0.1413 -59.2882 <0.0001

NY63Aout 1357 28.1578 -0.0243 0.0742 -168.3938 <0.0001

NY63Aout 1357 23.302 -0.0072 -0.0204 -126.3282 <0.0001

NY63Aout 1357 36.184 -0.0019 -0.1122 -53.1712 <0.0001

NY63Aout 1357 21.2713 -0.0068 0.0085 -229.9787 <0.0001

NY65Ain 828 3.3514 -0.0574 0.0572 -278.706 0.18727446

NY65Ain 828 12.8499 -0.0545 0.126 -132.9546 <0.0001

NY65Aout 828 21.7495 -0.0405 0.0651 -206.7026 <0.0001

NY65Aout 828 7.5755 -0.0712 0.0867 -338.4887 <0.0001

NY65Aout 828 24.3846 0.01 -0.1103 -38.2489 <0.0001

NY65Bin 1175 30.1519 -0.0261 0.1202 -57.7677 <0.0001

NY65Bin 1175 38.1532 0.0123 -0.0749 -130.9903 0.00084228

NY65Bin 1175 58.6243 0.1086 -0.1448 -261.9502 <0.0001

NY65Bout 1175 111.8793 0.1479 -0.166 -488.9854 <0.0001

NY65Bout 1175 33.5212 0.0024 -0.3515 -38.8942 0

NY67Aout 117 15.3462 -0.001 0.0593 -118.9137 <0.0001

NY67Aout 117 16.5768 0.0039 0.0211 -159.264 <0.0001

NY67Aout 117 15.5465 -4.00E-04 0.0396 -112.6097 <0.0001

NY67Aout 117 17.3289 0.0086 0.0204 -161.63 <0.0001

NY67Aout 117 20.3922 0 -0.0013 -123.4492 <0.0001

NY67Aout 117 19.0213 -0.0156 1.2858 -30.8386 <0.0001

NY67Aout 117 15.3691 -8.00E-04 0.0839 -87.959 <0.0001
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