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EXECUTIVE SUMMARY 

Objective 

The objective of this research was to analyze the relationships between road weather conditions 

and crash occurrences in Iowa and to develop crash frequency and severity models considering 

weather-related factors. In particular, the researchers used snowplow automatic vehicle location 

(AVL) data to examine the effects of winter maintenance operations on roadway safety and 

mobility.  

Background and Problem Statement 

Inclement winter weather significantly impacts traffic safety. Between 2010 and 2014, Iowa saw 

more than 8,000 winter weather-related crashes, including 190 fatalities and serious injuries and 

2,200 minor injuries. To mitigate the impacts of winter weather, the Iowa Department of 

Transportation (DOT) spent 34.6 million dollars on winter maintenance in 2018 and has 

averaged 29.44 million annually over the last five years.  

Much research has attempted to determine the impacts of winter weather events on safety. As 

more knowledge has been gained, attention has turned to quantifying the impacts of winter 

maintenance operations on safety.  

In recent years, the Iowa DOT has collected large amounts of detailed data pertaining to winter 

weather, traffic safety, and winter maintenance operations. Because of the amount of detail in the 

data, a thorough examination of the interactions between all three concerns has become possible.  

Research Description 

A crash frequency model and a crash severity model were developed to quantify and provide 

insight into the relationships among winter weather, traffic safety, and winter maintenance 

operations. 

The models utilized data from various sources covering the winters of 2016–2017 and 2017–

2018 and eight city centers in Iowa.  

Weather data were obtained from automated weather observing system (AWOS) and road 

weather information system (RWIS) units. These data were fed into the Iowa Environmental 

Mesonet system, which provides highly granular data across Iowa.  

Crash data were extracted from the Iowa DOT crash database. 

AVL data from snowplows captured date and time, longitude and latitude, travel speed, plow 

position, and material spreading rate at approximately 10-second intervals. 
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The crash frequency model was developed based on snowstorm events. Each winter storm was 

considered as a sample. The number of crashes associated with each event was analyzed in 

relation to traffic-, weather-, and snowplow operation-related variables.  

The crash severity model was developed by linking each crash with weather- and snowplow 

operation-related variables. An ordered logit model was used to model crash severity based on 

the five-tier KABCO numerical categorization system.  

Because of the depth of data available, a deeper analysis was conducted involving various ratios 

between different datasets to further explore the relationship between snowplow parameters and 

crash risk.  

Key Findings 

A roughly 50/50 split of winter weather-related crashes occurred during a winter storm (i.e., 

during precipitation) versus outside of a winter storm. The large proportion of crashes outside of 

a winter storm may be attributed to the persistence of adverse pavement conditions after the 

storm ends and possibly drivers’ false sense of safety.  

Crashes resulting from winter events were found to be less severe than comparable crashes 

during the same timeframe. Weather-related crashes were found to have a greater proportion of 

property damage only (PDO) crashes and a lower proportion of major injury and possible injury 

crashes.  

Counterintuitively, higher crash counts and frequencies were correlated with a higher number of 

snowplow passes (i.e., greater snowplow activity). This is because the number of snowplow 

passes is directly correlated to storm duration, in that snowplows travel greater distances and 

spread more material during longer storms.  

When controlling for weather variables, normalizing the total solid material that snowplows 

spread by the total snowfall revealed that the more solid material spread, the greater the safety 

benefit.  

Many winter crashes were found to be temporally located near a snowplow pass either before or 

after the crash event. Many of these crashes occurred along Interstate routes. Because these 

routes have multiple lanes and are plowed frequently, Interstate crashes are likely to occur close 

to a snowplow pass.  

Crashes on Iowa routes tended to occur when plow passes were temporally further away from 

the time of the crash. The crash severity model showed that these routes are less safe than 

Interstate routes and that both US and Iowa routes had a higher propensity for severe crashes 

than Interstate routes. 
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An analysis of expected versus observed crashes showed that almost one-third of all crashes 

occurred before a snowplow pass, which was significantly higher than the expected proportion. 

The proportion of observed crashes where several snowplow passes occurred before the crash 

was significantly lower than the expected proportion. These relationships suggest that the greater 

the number of snowplow passes early in the storm, the fewer the crashes.  

Implementation Readiness and Benefits 

The results of this research helped elucidate the key relationships among winter weather, 

snowplow operations, and traffic safety. These findings can help inform decision makers about 

how maintenance operations impact safety. 

The scope of the study was limited by the number of RWIS sensors, difficulties in quantifying 

winter storms, and crash data quality. Additionally, non-precipitation based winter weather 

events were not analyzed in the crash frequency model. For example, blowing snow can cause 

hazardous driving conditions across Iowa. Because of time and resource constraints, these events 

could not be incorporated into that part of the study. 

The 50/50 ratio of crashes that occurred during versus outside of a storm event may indicate that 

crashes that occurred after a storm are underrepresented. Examining a longer period after the 

storm may present a clearer picture of the lasting effects of winter storms. Additionally, the 

impacts of individual snowplow passes on safety could be clarified by considering snowplow 

pass frequency in light of the number of lanes on the road.  
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INTRODUCTION 

The Federal Highway Administration (FHWA 2017) states that 70 percent of the US population, 

as well as 70 percent of roadway networks, experience 5 inches or more of snow per year. The 

area that receives regular snowfall spans most of the United States, excluding southern states 

such as Florida, Georgia, Louisiana, Mississippi, and South Carolina. Because so many 

Americans experience winter driving conditions, it is important to determine how best to 

approach these winter events in order to provide the greatest utility to the overall public. 

Each year, approximately 900 people are killed and 76,000 people are injured during winter 

weather events nationwide (FHWA 2017). These numbers increase to 1,300 deaths and 116,000 

injuries when accounting for crashes caused by seasonal roadway conditions, such as snow- and 

ice-covered pavements. In Iowa, there were more than 8,000 winter weather-related crashes, 190 

fatalities and serious injuries, and 2,200 minor injuries between 2010 and 2014 (Hans et al. 

2018). Furthermore, the FHWA estimates that 21 percent of all crashes are related to weather, 

including rain, fog, and winter conditions.  

Not only are there safety implications involved in winter weather, but mobility implications as 

well. Light precipitation can cause a speed reduction between 3 and 16 percent, while heavy 

snow can reduce speeds by 64 percent (FHWA 2018). Not only are speeds adversely affected, 

but the overall flow of traffic is restricted due to weather conditions.  

To combat the adverse effects of winter weather events, state and local agencies spend more than 

2.3 billion dollars on winter operations annually, which accounts for approximately 20 percent of 

state department of transportation (DOT) maintenance budgets (FHWA 2017). Furthermore, 

roadways deteriorate at a faster rate during winter maintenance operations, causing additional 

economic distress. In 2018, the Iowa DOT spent 34.6 million dollars on winter maintenance and 

has averaged 29.44 million annually over the last five years (Iowa DOT 2019a). 

The objective of this project was to analyze the relationships between road weather conditions 

and crash occurrences in Iowa and to develop crash frequency and severity models considering 

weather-related factors. In particular, the researchers used snowplow automatic vehicle location 

(AVL) data to examine the effects of winter maintenance operations on roadway safety and 

mobility.  

A crash frequency model and a crash severity model were developed to quantify the interacting 

variables. The crash frequency model was built based on snowstorm events. Each winter storm 

was considered as a sample. The number of crashes associated with each event was related to 

traffic, weather, and snowplow operation-related variables. The crash severity model was built 

by linking each crash with weather and snowplow operation variables. These models aim to 

provide insight regarding the relationships between weather, winter operations, and safety.  

Various data sources were utilized. The main weather data sources included automated weather 

observing system (AWOS) and road weather information system (RWIS) units. These data were 
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fed into the Iowa Environmental Mesonet system, which provides highly granular data across the 

state. Traffic volume data were collected from the Iowa DOT’s automatic traffic recorders 

(ATRs) and Wavetronix sensors. In addition, snowplow AVL data were explored to understand 

the relationships among maintenance operations, winter weather events, and traffic safety. 

This report is segmented into four additional chapters, as follows: 

 First, the Literature Review chapter contains past work on the subject of winter maintenance 

operations and winter weather events and their relationships to traffic safety and mobility.  

 Second, the Data Collection, Processing, and Quality Assurance chapter provides details on 

data collection and the method for processing and assuring the quality of the data. This 

chapter also provides details on the data preparation processes needed for estimating the 

crash frequency and crash severity models, each of which required a unique approach.  

 Third, the Results chapter discusses the crash frequency and crash severity models and the 

analysis. Each model uses a separate approach even though the data sources for both are the 

same.  

 Fourth, the Conclusions chapter summarizes the findings of this study and discusses future 

research directions. 
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LITERATURE REVIEW 

In this chapter, we review past work studying how winter weather events impact traffic mobility 

and safety and examine the role of winter maintenance operations. 

Mobility and Safety 

Traffic volumes play an integral role in traffic safety models. Because of the nature of winter 

storm events, the typical traffic flows might not represent the actual volume traveled during the 

storm. Early work performed by Hanbali and Kuemmel (1992) demonstrated the effect of winter 

events on traffic volumes. They investigated the impacts of snowfall on traffic volumes by 

placing ATR counters throughout the midwestern and northeastern US. The traffic data were 

then compiled with weather data to observe the effects of weather on traffic volumes. The first 

finding is that more snowfall results in a greater reduction in traffic volumes, as seen in Figure 1. 

 

 
Hanbali and Kuemmel 1992 

Figure 1. Traffic behavior during weather events 
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The second finding is that the volume reduction depends on the time of day. The p.m. volumes 

were found to be less impacted compared to the a.m. peak volumes. This signified that travelers 

adjusted plans in the morning but were unable to make accommodations later in the day. The 

difference in volume reductions for weekday peak hours compared to weekday off-peak hours 

was significant. This suggests that people alter their travel plans when able. However, when 

schedule adjustment is not possible, many people continue to choose to drive in potentially 

adverse conditions. 

More recent work has expanded the knowledge of changes in traffic patterns due to winter 

weather events. One study examined 15 years of traffic and weather data in order to enhance the 

current knowledge on traffic volume variation (Datla et al. 2013). The study found that traffic 

volumes vary more at the start of the winter season than at the end of the season. This suggests 

that drivers either adapt to driving in adverse conditions or gain a false perception of the 

potential safety implications. An alternative possibility is that drivers overestimate their own 

driving abilities. Specific classifications of roadways, such as Interstates and US highways, were 

categorized and analyzed. The findings show that commuter routes see the lowest variations in 

traffic volume and that non-commuter routes experience the largest variations in traffic volumes. 

Past research has also found that the overall traffic volumes during winter storm events is lower 

than average volumes. This suggests that individuals postpone trips due to inclement weather 

and/or that drivers adapt their routes to reflect snowplow activity. This study also inspected the 

relationships between traffic volume variations and vehicle class. It was found that passenger 

cars experience a greater volume reduction compared to commercial vehicles. The commercial 

traffic on main arterials can actually increase during winter weather events. The suggested reason 

for this was that commercial traffic is required to follow certain schedules. Furthermore, 

commercial traffic is diverted from minor roadways, where there is little to no maintenance, onto 

roadways that provide maintenance operations. 

Inclement weather also impacts roadway capacity. Agarwal et al. (2005) examined speed and 

capacity variations for various weather conditions in Minneapolis. Four weather categories for 

both rain and snow were selected and studied: none, light, medium, and heavy (Table 1).  

Table 1. Capacity reductions 

Variable Range (in./hr) 

Capacity (percentage change) 

MSP MIC STP 

Rain 

0 0 0 0 

0–0.01 -1.44 -1.17 -3.43 

0.01–0.25 -5.67 -5.94 -10.1 

>0.25 -10.72 -14.01 -17.67 

Snow 

0 0 0 0 

<=0.05 -3.93 -5.51 -3.44 

0.06–0.01 -8.98 -11.53 -5.48 

0.77–0.5 -7.45 -12.33 -13.35 

>0.5 -19.53 -19.94 -27.82 

Source: Agarwal et al. 2005 
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This study was performed over three main regions around Minneapolis using approximately 

4,000 pavement sensors. The results for each region proved to be consistent with each other. 

What is unclear is how much of the capacity reduction is due to reduced speeds and how much is 

due to deteriorating road conditions. The question is whether snowplow operations would 

provide a significant increase in roadway capacity or whether the capacity reduction is due to 

visibility issues. 

The safety implications of winter weather events have also been well documented. A study in 

Iowa performed by Maze et al. (2006) presented clear findings regarding the relationship 

between winter weather and traffic safety. Traffic counts along I-35 in northern Iowa were 

collected and aggregated together with weather and crash data. Overall, Iowa experienced an 

average of 18.2 snow events per year, which equates to 5 percent of the year. The results of a 

crash analysis showed that although snow events are infrequent, they account for 21 percent of 

all crashes. Along with this result, the findings reflected past work that found that crash rates 

increase and crash severities decrease for winter weather events. This is due mainly to the fact 

that vehicle speeds can be significantly reduced during storm events.  

Maintenance Operations 

Because winter weather events play a critical role in the roadway network across the nation, 

much work has been performed to determine the impacts of winter weather on traffic safety and 

mobility. The next key area of interest regarding the impacts of winter weather is how 

maintenance operations interact with these other variables to provide a better roadway system.  

Though the data necessary to fully comprehend the effects of maintenance operations were not 

yet available, early attempts were made to quantify the benefits of winter maintenance 

operations. One of the earliest investigations of winter maintenance operations in the US was 

performed by Hanbali (1992). This study investigated the links between snowplow spreading 

times and locations with crash rates for winter events. A before-and-after analysis was performed 

in regards to when snowplows began spreading material on a specific roadway. This allowed for 

a comparison of crash rates on the same road with and without salt. The results showed that 

performing maintenance operations yields significant benefits in terms of traffic safety (Figure 

2). While these charts in Figure 2 do not annotate the start of weather events, it can be presumed, 

based on past literature, that the spike in crash rates is due to winter weather events. 
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Hanbali 1992 

Figure 2. Traffic crash rates before and after salt spreading at hour 0: two-lane highway 

(top), divided freeway (bottom) 

Furthermore, this study presented the findings of a cost-benefit analysis of winter maintenance 

operations. The findings demonstrate that there are significant economic gains from maintenance 

operations. This economic benefits stem from less severe crashes, faster travel times, and better 

fuel efficiency. Hanbali (1992) quantified the effects specifically for the cost of accidents, the 

cost of time, and operational costs (Table 2). 
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Table 2. Influence of winter road maintenance on economic costs 

 

Two-Lane Highways Freeways 

Icy De-Iced Icy De-Iced 

Accident Costs 62.5 7.4 31.6 4.9 

Time Costs 22.2 16.6 13.3 11.1 

Total 84.7 24.0 44.9 16. 

Costs are in cents per vehicle mile. 

According to Table 2, the cost savings of maintenance operations are significant. The first 

savings are due to the reduced cost per accident. The study found a significant drop in fatal 

crashes, which most likely accounts for the large drop in costs. Because roads are more usable, 

travelers experience fewer interruptions, which ultimately decreases travel times and the 

associated costs of fuel and time. The study concluded that winter maintenance operations 

provided a benefit of $172 per mile for the first hour of salt spreading during a winter event for 

two-lane highways and $423 per mile for freeway segments. 

Usman et al. (2010) examined the major factors determining the effectiveness of snowplow 

operations and the relationship between snowplow operations and safety. This study was 

performed in the city of Toronto on several select roadways throughout the city. Throughout 

Canada, a multitude of road condition weather information system (RCWIS) stations are set up 

to monitor everything from roadway conditions to precipitation and visibility. Toronto in 

particular employs a large number of such surveillance systems. Usman et al. (2010) focused on 

a winter weather event-based analysis. Variables such as road conditions and weather were 

collected for each storm event. The road conditions variable was meant to indirectly represent 

the presence of snowplow operations. This is because snowplows improve the surface conditions 

over time, which therefore means that these factors are correlated. The final model suggests that 

surface conditions, traffic volumes, and visibility have significant impacts on crash frequency 

throughout a winter storm. When accounting for all of the variables, surface conditions were 

found to have a large impact on the crash rate. As road conditions approach bare, the number of 

accidents drops dramatically. 

This same group of researchers furthered their work in establishing a link between road surface 

conditions and safety (Usman et al. 2012). While their previous study (Usman et al. 2010) 

focused mostly on the maintenance operations for the entire storm, their later study focused on 

hourly data and its relationship to the entire storm event. This study was performed in the 

Ontario region of Canada and spanned six winter seasons. In order to quantify the effects of 

snowplow operations as a function of time, this study controlled the number of snowplow passes 

from the start of the storm event. The elapsed times investigated in the study were two, four, and 

six hours. Each route was designated to have a snowplow pass at one of the times of none, two, 

four, or six hours from the start of the storm event. The mean number of accidents was plotted 

along the elapsed time since the start of the storm. An analysis was performed for each of the 

elapsed time categories: pass times of two, four, and six hours and no pass times. The mean 

number of accidents dropped at the times when a snowplow pass occurred and then gradually 

increased as more time elapsed since the snowplow pass. These results indicate that earlier 

operations produce a prolonged benefit and suggest that earlier mobilization produces a greater 
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impact on safety. Additionally, it was found that visibility, traffic volume, precipitation intensity, 

wind speed, and air temperature were all major factors affecting crash frequency.  

Understanding the temporal relationship between safety and winter events can provide 

significant insight into the effectiveness of winter maintenance operations. One study focused on 

determining this relationship based on data from the state of Wisconsin (Qin et al. 2006). A 

major finding presented was the relative crash time from the start of the storm. For example, a 

crash that happened 6 minutes into a 60 minute storm would receive a relative time of 1, or 10 

percent. The histogram in Figure 3 shows that most crashes occur earlier in storms and the 

percentage drops off significantly after about 50 to 60 percent of the storm has passed.  

 
Qin et al. 2006 

Figure 3. Crash percentages by storm time interval 

In the crash frequency model developed by Qin et al. (2006), it was found that freezing rain, time 

at which plowing occurs before a storm, storm duration, deicing units per lane mile, salt per lane 

mile, and wind speed were significant. The results showed conflicting coefficients for deicing 

units and salt units. The deicing unit coefficient held a negative regression, meaning that the 

more deicing units used, the fewer crashes recorded. The salt unit coefficient held a positive 

regression, meaning that using more salt would produce more crashes. It is intuitive that larger 

storms create a demand for more material, which thus explains the positive relationship between 

crashes and salt use. Nevertheless, because of the unique nature of each winter event, 

representing the proper relationship between winter storms and snowplow operations presented 

many challenges for the study. 
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DATA COLLECTION, PROCESSING, AND QUALITY ASSURANCE 

This chapter describes the data used in the study and quality control and assurance steps taken. 

Overall, five main categories of data were used: 

 Weather data 

 Crash data 

 Traffic data 

 Roadway information data 

 Snowplow AVL data 

The scope of these data spans two winter seasons from 2016 to 2018. Generally, winters in Iowa 

span anywhere from October 15 to April 15 of the following year. However, the winter of 2016–

2017 was expanded to May 15, 2017. Therefore, we used data from November to May for the 

2016–2017 winter season and from November to April for the 2017–2018 winter season. The 

geographical region of interest encompasses the entire state of Iowa and includes all of the Iowa 

DOT-maintained roadways (Figure 4). Iowa DOT-maintained roadways include the Interstates, 

US highways, and Iowa routes across the state.  

 

Figure 4. Iowa DOT-maintained roads 

For the crash frequency model, eight independent urban city centers were selected for the study: 



10 

1. Ames 

2. Des Moines 

3. Council Bluffs 

4. Cedar Rapids 

5. Sioux City 

6. Waterloo 

7. Iowa City 

8. Quad Cities 

These eight regions encompass many of the large urban areas in the state of Iowa (Figure 5).  

 

Figure 5. Iowa city centers map 

Each of these eight regions also operates snowplow operations independently. In regards to the 

crash severity model, all available crash locations across the state were eligible samples so long 

as they fell along Iowa DOT routes. 

Weather Data 

The weather data were obtained from the Iowa Environmental Mesonet database. Within the 

mesonet database, there are several weather data programs. One is the Cooperative Observer 

Program (COOP) database, which measures daily snowfall. There are 123 stations throughout 

Iowa. Volunteers collect snowfall depth data every morning and report their findings. Another is 
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the AWOS database. There are a total of 47 stations throughout Iowa, mainly at airports. They 

measure wet precipitation totals, precipitation type, visibility, weather warnings, temperature in 

Fahrenheit, and wind speed in five-minute aggregation chunks. The Iowa Environmental 

Mesonet database also partners with National Oceanic and Atmospheric Administration (NOAA) 

to share weather data. As a result, data from the Multi-Radar/Multi-Sensor (MRMS) project, 

which combines information from many sources and radar systems to create precise weather 

conditions, were available for this study. A list of relevant data is provided in Table 3.  

Table 3. Weather variables 

Weather Variable 

Update 

Interval Source Description 

Air Temperature (°C) 5 minutes AWOS 
The air temperature 2 meters above 

the ground 

Wind Speed (knots) 5 minutes AWOS 
The average wind speed of the 5 

minutes at 10 meters above ground 

Hourly Precipitation 

(in./hr) 
5 minutes AWOS The measured rate of snowfall 

Weather Codes 5 minutes AWOS 
The weather conditions and the 

precipitation types 

Precipitation 

Accumulation (in.) 
5 minutes 

NOAA 

MRMS 

The liquid equivalent for the 5-minute 

interval 

Daily Snowfall (in.) 1 day COOP 
Snowfall depth collected by 

volunteers throughout the state 

Hourly Precipitation 

(in./hr) 
5 minutes AWOS The current rate of precipitation 

Freezing Rain 

(intensity) 
5 minutes 

NOAA 

MRMS / 

AWOS 

Uses weather codes and precipitation 

totals to extrapolate the freezing rain 

intensity 

Snow (intensity) 5 minutes 

NOAA 

MRMS / 

AWOS 

Uses weather codes and precipitation 

totals to extrapolate the snow intensity 

Visibility (kilometers) 5 minutes AWOS 
The horizontal visibility measured by 

sensors 

Roadway Condition 5 minutes RWIS 
The pavement surface conditions 

provided by sensors 

 

Because of the scattered geographic nature of the weather variables, one of the initiatives started 

by the mesonet database was the grid cell identifier (GID) system. The state of Iowa is broken 

down into approximately 1-mile by 1-mile square blocks. Each square block is populated with 

the appropriate weather data depending on the current weather conditions across Iowa and its 

proximity to each respective weather sensor. This provides accurate weather data for the entirety 

of Iowa. By using the GID system and the five-minute data aggregation together, any location in 

Iowa has an accurate representation of current weather conditions.  
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RWIS stations provide weather data as well as pavement condition data at sensor locations. In 

total, there are 86 RWIS stations across the state. RWIS sensors provide qualitative data such as 

“icy,” “snow covered,” etc. While the weather conditions may give some indication of the 

roadway surface index, there is not a direct correlation between the two. While RWIS sensors 

can provide valuable information, each city center only has one or two sensors installed. Because 

of this, the sensor data can only provide the overall roadway conditions for the area and not the 

exact conditions at each crash location. Therefore, the RWIS data provided significant 

information for the crash frequency model but proved to be unusable for the crash severity model 

because of the geographic spread of the data. Crash data were located across the entire state and 

were not always near an RWIS sensor.  

A categorical assignment method was applied to the road condition data. The RWIS data 

produced various codes for pavement conditions. Each code was assigned to a categorical 

number, 1 through 6, with the “Wet” and “Chemically Wet” codes in the same category. The 

“Other” and “Error” codes were discarded. A category of 1 indicated the best road conditions 

and 6 indicated the worst. 

Crash Data 

The crash data originated from the Iowa DOT crash database. The state of Iowa mandates that 

any crash resulting in injury or damages greater than $1,500 on public roads be reported. Once 

compiled, the data are split into three levels: the crash, vehicle, and person levels. Multiple 

person-level or vehicle-level relationships can exist for a single crash level. For the purposes of 

this research, only the crash-level database was examined. 

Each crash is assigned to a geographic location as well as to a specific route with a direction of 

travel. The crash data include information such as the location, time, crash severity, direction of 

travel, lighting conditions, and weather conditions that contributed to the crash. Each crash may 

contain several levels of severity, such as fatal injury or property damage only (PDO), all 

resulting from a single crash event. Because only the crash-level data were applied to the 

analysis, a distinction needed to be made among the crash severity levels. Therefore, the highest 

severity was taken as the crash severity level for that specific event. 

Four main fields in the crash reports were used to filter winter weather-related crashes. These are 

described in Table 4.  

Table 4. Crash attributes 

Crash Attribute Description 

Environmental Contributing 

Circumstances 
If the environment/weather played role in the crash 

Weather1 The primary weather conditions at the time of the crash 

Weather2 Any other contributing weather conditions 

Surface Conditions The roadway surface condition at the time of the crash 
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As long as one of the four fields contained a winter weather-related variable, the crash was 

included in the analysis. Weather1 and Weather2 provided details of the contributing weather 

conditions. In the subsequent analysis, crashes with a contributing weather factor of snowfall, 

freezing rain, or blowing snow were considered. 

Additionally, all crashes needed to have occurred along the aforementioned Iowa DOT 

maintenance routes and within the temporal range for each respective year. Ultimately, 5,089 

winter weather-related crashes were identified for the winters of 2016 through 2018 combined 

(Figure 6).  

 

Figure 6. Crash severity breakdown for weather-related crashes on Iowa DOT 

maintenance routes during the 2016–2018 winters 

Consistent with past research, most of the winter crashes identified tended to have low severities. 

The large jump in the number of crashes from the 2016–2017 winter to the 2017–2018 winter is 

due to the fact that there were more winter storm events that winter. 

Several challenges existed in the crash dataset. First, the recorded crash times might not be 

accurate. Under normal weather conditions, neither the police nor the parties involved may 

remember the exact time of the incident. During winter weather events, police response time may 

be slower and crash reporting may occur significantly later, leading to a decrease in accurate 

reporting. Another source for error is the direction of travel indicated in the crash report. There 
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are many instances throughout Iowa where a north/south roadway runs east/west or somewhere 

in between and vice versa. Several roads in Iowa also overlap, one example being I-80/I-35 in 

Des Moines, where the directionality for each route is not congruent with that of the other route. 

Attempts were made to correct this issue. However, they proved ineffective. In regards to the 

crash frequency model, these issues proved insignificant because the direction of travel within 

cities is not recorded. For the crash severity analysis, a significant portion of crashes along I-

80/I-35 on the north side of Des Moines could not be assigned travel directions and therefore 

were omitted from the analysis.  

Traffic Data 

The Iowa DOT records and stores traffic data from across the state. The devices used to collect 

continuous traffic data are ATRs or Wavetronix sensors. ATR sensors cover every type of road 

class in Iowa in order to provide traffic data and create the seasonal and temporal annual average 

daily traffic (AADT) adjustment factors. The purpose of Iowa’s Wavetronix sensors is to provide 

real-time traffic data, mainly along Interstate routes in metropolitan areas, to state officials. From 

these sensors, the five-minute aggregate data of speed, volume, and occupancy were obtained. 

Most Wavetronix sensors are placed in urban areas and offer significant coverage (Table 5).  

Table 5. Wavetronix sensors 

City 

Number of 

Wavetronix Sensors 

Ames 82 

Cedar Rapids 163 

Council Bluffs 151 

Des Moines 289 

Iowa City 78 

Sioux City 92 

Davenport 46 

Waterloo 61 

 

Although Wavetronix sensors are also placed in rural areas, there is not enough coverage to 

justify their use. For this reason, the Wavetronix data were applied to the crash frequency model 

but not the crash severity model. 

In order to account for erroneous data, a filter was placed on the Wavetronix data to ensure that 

only accurate information would be used. The Highway Capacity Manual (HCM) states that a 

base capacity for freeways is 2,400 passenger cars per hour per lane (pcphpl) (TRB 2016). This 

filtering threshold was adjusted to reflect a five-minute interval and to account for the number of 

lanes on a particular roadway. For example, for a roadway segment with four lanes, the 5-minute 

volume cutoff value was set as 840 vehicles. That is, we considered any 5-minute volume less 

than 210 vehicles per lane as reasonable. These recommended values are based on normal 

weather conditions and uninterrupted flow, or baseline conditions. 
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The Iowa DOT offers statewide coverage of the AADT counts, which are updated on a four-year 

cycle. Because of this range in coverage, the AADT can be used to calculate counts for rural 

roads that do not have Wavetronix coverage. Through the ATR program, the Iowa DOT provides 

yearly updates to the temporal and seasonal adjustment factors. These adjustment factors can be 

applied to the AADT to calculate the traffic volume during winter weather events (Iowa DOT 

2019b). Through the AADT and seasonal correction factors, the crash severity model accounted 

for traffic volumes in this manner. 

Roadway Information Data 

The Iowa DOT maintains a roadway network information system known as the Roadway Asset 

Management System (RAMS). This database offers information such as roadway geometry, 

speed limits, and AADT. One important component of RAMS is its linear reference system 

(LRS). This system is intertwined with the RAMS network and combines the geometric data 

with linear reference points. These reference points act like mile markers along a route and are 

instrumental in combining various data sources. Each similar section of congruent roadway 

becomes a unique route in the LRS system and contains the linear reference marks. This provides 

a tool to divide the same route based on different roadway geometric design constraints. Each 

LRS route is coded by directionality because certain geometric constraints may or may not be 

present on both sides of the route. Certain data, such as the AVL data, are based on directional 

flow and need a direction of travel to link data points.  

In the crash frequency analysis for this study, two distinct measurements were taken for each 

city: the total length of roadway miles and the total lane miles (Table 6).  

Table 6. City areas and miles 

City Road Miles Lane Miles 

Ames 142 285 

Cedar Rapids 199 439 

Council Bluffs 153 359 

Des Moines 624 1380 

Iowa City 227 563 

Sioux City 218 517 

Davenport 279 597 

Waterloo 232 482 

 

The total mileage is the length of all Iowa DOT-maintained roadways. The lane miles variable is 

the total roadway length multiplied by the number of lanes for each roadway segment. 

AVL Data 

The Iowa DOT has recorded snowplow AVL data for the past several years. The AVL data 

include date and time, longitude and latitude, travel speed, plow position (up/down), and 
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spreading rate and are recorded at approximately a 10-second refresh rate for each snowplow 

truck. The Iowa DOT has more than 900 snowplow trucks distributed across 101 garages. Three 

types of spreading rates are recorded: solid rate, prewet rate, and liquid rate. While the prewet 

and liquid materials are measured differently, many snowplow operators apply these materials in 

tandem. The data collected also include a material set rate and actual spreading rates. Four types 

of plow wing records are available: front plow, left wing, right wing, and underbelly plow. The 

truck capacity is 12,000 lbs for single-axle trucks and 24,000 lbs for tandem-axle trucks.  

The spreading rate is approximately 200 lbs per lane mile for solid material. The liquid material 

has varying spreading rates depending on the storm conditions. For anti-icing pre-storm 

conditions, the spreading rate is approximately 60 gallons per lane mile, and for in-storm 

conditions, the rate is approximately 10 gallons per lane mile. The service speed of plowing and 

spreading is about 30 miles per hour, and deadhead speed can be as high as the speed limit. 

Concerning the variables, plow operators often concurrently deploy the liquid material with the 

prewet material. For the purposes of this study, both were considered as the liquid rate. 

Many variables are involved in the decision to perform maintenance operations. These range 

from time of day and current snowfall to weather forecasts. Because of these variances, each 

district is entrusted to make decisions based on their experience and expertise. The Iowa DOT 

has set guidelines for a snowplow pass frequency minimum for different levels of roads. The 

actual operation can vary by time of day, storm conditions, and the garage. Certain locations may 

receive more passes due to their central location and overlaps between snowplow routes. 

The AVL data provided for this study had some quality issues. The plow position tracker data 

proved to be unreliable. Furthermore, multiple data samples had identical timestamp values but 

displayed different data values. Extensive corrective methods were applied to compile the most 

accurate dataset possible. Ultimately, a limited number of variables proved reliable for inclusion 

in the analysis (Table 7).  

Table 7. AVL parameters 

Variable Unit Description 

LIQUIDRATE gal/mile Liquid material spreading rate 

PREWETRATE gal/mile Prewet material spreading rate 

SOLIDRATE lbs/mile Solid material spreading ate 

PRELIQUID gal/mile 
Prewet and liquid material spreading rates 

combined 

VELOCITY mph Vehicle speed 

LOGDT datetime Timestamp of AVL data 

routeId LRS Route LRS reference route ID 

measure LRS Reference LRS route reference point beginning 

END_MEASURE LRS Reference LRS route reference point ending 
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METHODOLOGY 

This chapter presents the crash frequency model, crash severity model, and the statistical 

analysis methods used in this study. 

Crash Frequency Model 

The weather data sources were employed to create a list of storm events occurring between 2016 

and 2018. This methodology followed the process used in similar studies (Usman et al. 2012, 

Usman et al. 2010). Figure 7 displays a representation of the data aggregation timeline used in 

this study. Data were collected and analyzed between the storm start and storm stop times for all 

data sources. 

 

Figure 7. Crash frequency data aggregation timetable 

Each of the eight urban centers were analyzed based on their respective weather events. The GID 

data were overlaid on top of each city in order to determine which GIDs encompassed that city. 

Base maps in ArcGIS were referenced in order to determine the cities’ boundaries. A fence was 

drawn around each city in order to create the boundaries (Figure 10) (Figure 5). The GID data 

were intersected with the new bounding box, and a list of GIDs was extracted and aggregated 

together.  

Because city centers are large geographic regions, it is possible that precipitation occurs on only 

part of the area. The purpose of aggregating the data was to ensure that these scenarios counted 

towards weather events in the region. A filter was applied to the GID data to extract any 

timestamps that had a precipitation greater than zero. Because the filtered list contained only 

precipitation events, a continuous strand of timestamps constituted a winter event. A single 

storm’s start or stop time was then determined by calculating the difference in time between the 

previous and the subsequent data points. A gap of 20 minutes was used to determine the end of a 

storm. This was to account for any lulls in a storm event or errors in the weather data. In 

instances where there was a gap of less than 20 minutes, the two segments of precipitation were 

counted as the same storm event.  
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Additional filters were applied in order to determine the final list of snow events: 

1. Any continuous time period with a total precipitation greater than 0, a magnitude of snow 

greater than 0, or a magnitude of freezing rain greater than 0 

2. Any continuous time period with a temperature below 41 degrees Fahrenheit 

3. Any continuous time period lasting longer than 30 minutes 

4. No break in precipitation for longer than 20 minutes 

Note that blowing snow events did not count as a winter weather event.  

The weather data within each storm were then aggregated to determine the total precipitation, 

highest hourly precipitation rate, storm duration, average wind speed, and temperature. This 

process was performed for each city, which allowed for an analysis of variations in weather 

patterns. The COOP data were compared to the GID data in order to verify the accuracy of the 

data. Figure 8 displays the breakdown of storm events across both winters by city center.  

 

Figure 8. Storm count breakdown by city 

While the eight cities are spread across a large geographic area, it was expected that there would 

be minimal variation among the city centers. When comparing cities that lie directly north and 

south of each other, the general trend is for more winter storms in the more northern city. For 

example, Ames is located approximately 30 miles north of Des Moines and received slightly 

more winter storms during the study period. The same relationship holds for Cedar Rapids and 

Iowa City. The only exception is the city of Waterloo. 

Once the storms’ start and stop times were determined, these timestamps were overlaid with the 

list of Wavetronix sensors from each city center. The associated vehicle count data collected 

from the Wavetronix were then summed to get the total summation of vehicle counts. Because of 

the storm-wide approach used in the crash frequency model, accounting for traffic volumes 

proved difficult. Prior research has proposed a unique method to account for traffic volume 
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(Usman et al. 2012). This method relies on an exposure count of traffic volumes, as displayed in 

equation (1).  

𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒 = 𝐴𝑉𝐶 × 𝑀𝑖𝑙𝑒𝑠  (1) 

Exposure accounts for the vehicle miles traveled (VMT) during the storm event, Miles is the 

road miles listed for each city in Table 6, AVC is the average vehicle count during the storm 

event. The AVC is the summation of vehicle counts divided by the total number of Wavetronix 

sensors divided by the total number of five-minute intervals for that respective storm. This 

results in an average count of vehicles per Wavetronix sensor per time unit interval.  

As mentioned previously, the crash data were filtered to capture crashes where winter weather 

conditions were a contributing factor in the crash. An additional filter was applied to capture 

crashes where the crash time was within the storm start and end times. For this analysis, crashes 

after the storm stop time were not considered (Figure 9).  

 

Figure 9. Storm-based crash counts 

Many storms yielded zero crashes. However, several large crash counts were observed during a 

few storms (Figure 9). One storm in particular accounted for over 70 crashes.  

Snowplow AVL data from across the state were collected from Iowa DOT-operated snowplows. 

The AVL data were overlaid with the GID data and the city boundaries in order to restrict data 

collection to each unique city center (Figure 10).  
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Figure 10. City center AVL boundaries 

Once the geographic bounds were set, the AVL location was used to filter pertinent data. A list 

of snowplows was compiled for each storm event. Additionally, an extension of two hours before 

and two hours after the storm was created in order to catch a larger operations effect. Each 

snowplow was aggregated separately. Each data point contained the spreading rate and material 

being spread. The AVL data also tracked the distance traveled for each data point. This distance 

traveled was multiplied by the spreading rate of the material to obtain the total material spread 

for that AVL data ping. During this step, the erroneous material spreading rates were corrected.  

In order to find the outliers for each truck, the material set rate value was taken and increased by 

25 percent to provide a buffer region. This new maximum value was used as the filter value for 

each individual material spreading rate. For example, if a truck has a set rate of 200 lbs/mile for 

solid material, the maximum allowable value for the material rate for that truck is set as 250 

lbs/mile. A similar calculation was performed for the liquid material.  

These calculations were performed on every snowplow data point and then repeated for each 

snowplow that operated within the geographic bounds of the city center. Because the set rate for 

each material can change throughout a storm, applying a dynamic filter for every data point 

provided better accuracy. An error range of 25 percent was selected in order to provide an 

adequate buffer for possible actual spreading rates. A buffer was installed because of 

discrepancies between the set rate by the computer system and the actual material spreading 

rates. 
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Several variables were derived from the processed data, the first being Laps (previous Table 6). 

The Laps variable was calculated by dividing the total snowplow distance traveled by the Lane 

Miles for the city. Because the size of each city’s roadway network varies, comparing the total 

distance traveled between storms would have skewed the data. For example, a smaller city such 

as Ames may take 20 hours to spread the same amount of material or travel the same amount of 

truck distance as Des Moines does in 4 hours. The variable Solid/Liquid per Lane Mile appeared 

in past research (Qin et al. 2006). This variable represents the intensity of the spreading of 

material for each city and in this study allowed for a normalized comparison.  

Several major assumptions were made for this procedure. First, the snowplows provided equal 

coverage across all lanes. Although the distance traveled was recorded, no distinction was made 

as to which lanes were traversed. This also assumes that all lanes contain similar weather and 

road surface conditions. Because the RWIS sensors were so sparse, some discrepancy may exist 

in the actual roadway conditions in different parts of each city. Furthermore, no distinction was 

made as to the roadway type traversed. In practice, Interstate routes would receive more 

maintenance treatment than other routes, thus leading to a difference in maintenance service 

levels. In general, this analysis reports the overall and general performance of snowplow 

operations for the city center as a whole. Therefore, no distinction could be made in regards to 

the route type. 

According to past work, crash frequency models tend to be over-dispersed (Lord and Mannering 

2010). Because of this over-dispersion, typical Poisson regression models become invalid. In 

order to correct these issues, a negative binomial (NB) model is employed. The NB model can be 

written as follows: 

  𝑌𝑖 ~ 𝑁𝐵(𝜇𝑖, 𝛼) (2) 

where  𝑌𝑖 is the number of incidents during a winter storm event 𝑖, (𝑖 =   1, … , 𝑛),  𝜇𝑖 stands for 

the mean crash frequency, and 𝛼 is the over-dispersion parameter. It is assumed that 𝜇𝑖 is a 

function of explanatory variables such that 

𝜇𝑖 = exp(𝛽0 +  𝛽1𝑥𝑖1  +  𝛽2𝑥𝑖2 + ⋯ +  𝛽𝑘𝑥𝑘 +  𝛽𝑘+1𝐿𝑛(𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒𝑖) )  (3) 

where 𝑥𝑖𝑗 represents the 𝑗𝑡ℎ variable in event 𝑖. 𝛽0, 𝛽1, … , 𝛽𝑘+1 is a vector of regression 

parameters. Because each storm event has different traffic characteristics, 

𝐿𝑛(𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒𝑖) acts as the offset variable. 

Crash Severity Model 

The crash severity model followed a similar methodology as the crash frequency with some 

minor variances. Each crash represented an individual event for this analysis. As such, filtering 

the pertinent crash data was the first priority. Each crash contained a latitude and longitude. This 

information allowed each crash to be linked to the RAMS LRS and receive a linear reference 

distance mark. For example, crash A was linked to I-80 at reference mark 21.3. The direction of 
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travel for the crash was needed to clarify which route reference direction to assign. In this regard, 

a stretch of crashes along I-80/I-35 in Des Moines proved unusable due to the fact that they did 

not have correct direction assignments.  

Once the LRS route assignment for each crash was made, traffic variables could be added. The 

Iowa DOT maintains a database of AADTs throughout the state and links them to RAMS, and 

thus the LRS. This allowed the seasonal adjustment factors to be applied to each crash location 

for this study. With the LRS code, the route speed limit, route type, and an urban or rural 

designation were also attached. 

Each AVL data point contains a reference to the LRS system. This marks the route ID, the 

reference distance start point, and the reference difference stop point. Therefore, each plow point 

covers a geographic as well as a temporal range along a specific route. The snowplow 

parameters, such as spreading rate, apply to that entire region of roadway. The snowplow 

parameters and the LRS reference are then updated in the ensuing data point. This successive 

process continues for the duration of the plow operations, providing continuous coverage of the 

traversed roadways. Figure 11 presents a visual of the AVL data overview. 

 

Figure 11. Snowplow crash point connection 

Since both the AVL and crash data contained the LRS data, these datasets were prepared so that 

they could be joined. Because the LRS provided route IDs with direction and reference points 

and continuous coverage, the data were connected in a straightforward fashion using several 

criteria: 

 Crash and AVL direction match and route IDs match 

 Crash falls within AVL reference distance mark 

 AVL passes come within two hours before or two hours after the crash 

In order to match the AVL and crash points, the route ID and direction of travel needed to match. 

This would ensure that AVL points from the opposite direction of travel on the same road would 

not count towards that crash and vice versa. Figure 11 displays the process implemented to 

connect the data. Each AVL point contains a range for the reference distance mark, while each 
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crash point contains a single reference distance mark. The first step in filtering was to find where 

the crash reference distance mark fell within the range of AVL reference distance marks. In 

Figure 11, Crash 1 and Crash 2 fall within the second AVL point, while Crash 3 falls within the 

third AVL point. As stated previously, the Iowa DOT maintains a two-hour pass frequency rate 

for its maintenance routes. The absence of a plow pass within two hours, plus or minus, signifies 

that AVL operations are not currently operating. There may be instances where plow pass 

frequency is delayed by the intensity of the storm, causing travel delays. Another scenario might 

be that the storm’s intensity is insufficient to necessitate standard maintenance operations. In 

either case, observing a plow pass more than two hours before or after a crash likely has little 

impact on the events of the crash. It is under this assumption that a filter of two hours before or 

after a crash was applied to the AVL data points. In Figure 11, Crash 1 occurred 4 minutes after 

the most recent plow pass, and Crash 3 occurred 17 minutes before the most recent plow pass. 

Meanwhile, Crash 2 occurred approximately 4 hours after the most recent plow pass and was 

therefore not matched with the AVL data. Certain locations across Iowa experience a plow pass 

frequency greater than two hours. In these instances, the totality of the data was compiled and 

aggregated. The total before and after passes were counted, and the ratio of before passes to after 

passes was calculated. 

Using a four-hour window for the effect of snowplow operations may exclude several important 

factors. Detailing the relationship between the time of a crash and the timeline of AVL 

operations can provide insight into their relationship. Past research has suggested that winter 

storm crashes occur early in the event and that road surface conditions play an important role in 

crash safety (Qin et al. 2006). By identifying the start time and duration of snowplow operations 

in relation to each crash, the entirety of the operations could be analyzed. AVL data for the 24 

hours both before and after the crash were filtered in order to determine the relevant operational 

events. As long as there were consistent plow operations or a pass frequency of approximately 

two hours, AVL data were considered part of the same operational event. Once the plow 

operation event was determined, the relative relationship between the crash time and the plow 

operations start time was derived by equation (4). 

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑇𝑖𝑚𝑒 =  𝐶𝑇 − 𝑂𝑆
𝑂𝐸 − 𝑂𝑆⁄  (4) 

Relative Time is a normalized scale for the crash time occurrence. CT stands for crash time, OS 

stands for operation start, and OE stands for operation end. By placing all crashes on a 

normalized scale, it becomes possible to compare the relative crash times in relation to the 

snowplow operations. 

In addition to examining the AVL operations as a whole, the investigation of individual plow 

passes may provide further insight. The count of total passes represents the overall frequency of 

passes for a specific location. Consequently, this does not fully represent the temporal 

relationship between plow passes and crashes. A location with a high number of total passes may 

simply have multiple roadway lanes. Alternatively, many plow passes may have occurred at the 

two hours before or after mark. By examining the temporal proximity of snowplow passes to 

each crash, these biases can be corrected. For each crash, the nearest AVL pass both before and 
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after was marked. By identifying these values, the plow pass proximity conditions at the time of 

the crash can be better understood. 

Each single crash was linked to the GID cell in which it was located. Once a GID cell was 

assigned to each event, the weather data could be aggregated. A list of storms for each location 

was compiled. If a crash fell within a storm, the relative time in relation to the storm was 

determined following equation (4). In this case, however, the operation start and end times were 

replaced with the storm start and end times. Not all crashes fell within a winter storm. Various 

crashes occurred immediately before or immediately after the winter event. If a crash did not 

occur during a winter storm, the time since the previous storm and the time until the next storm 

were calculated. By determining the proximity of crashes to weather events, the temporal 

relationship between winter storms and crashes can be better understood.  

In the literature, ordered probit and logistic regression models have typically been used to model 

crash severity. The KABCO system is a five-tier numerical categorization (Table 8) for 

describing crash severity (Iowa DOT 2014).  

Table 8. KABCO scale 

Symbol Injury Description 

K Fatal Results in death within 30 days 

A Suspected serious/incapacitating 
Injury prevents victim from continuing 

activities 

B Suspected minor/non-incapacitating Injury present but continues activities 

C Possible Non-visible injury or complaint 

O Uninjured Property damage only 

 

Often, the number of fatal and serious injury crashes is insufficient for individual analysis. In 

these cases, the various injury levels can be combined to provide adequate samples for analysis. 

Ultimately, a proportional odds model, or an ordered logit model, was applied to the crash 

severity data (equation [5]).  

𝑧 =  𝛽𝑋 +  𝜀 (5) 

where z is a latent variable that is predicted by the generalized linear equation, 𝛽 represents a 

vector of coefficients that can be estimated, 𝑋 is a vector of predictor variables, and 𝜀 is a 

random disturbance term. A threshold equation is then created (equation [6]). 
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 (6) 

where 𝜇 is defined as the threshold parameter that defines 𝑦, or the injury severity level, and 𝑛 

represents the integer number of responses, or the number of injury levels. 

An important component to severity analysis is to compute the marginal effects. The marginal 

effects for categorical variables represent the discrete change, or how the predicted probabilities 

change as the category varies (Williams 2018). Each crash severity level has the potential to 

interact differently.  

Statistical Tests  

Making comparisons between datasets provides many challenges. Establishing comparisons 

between two datasets that have the same mean and standard deviation and that are normally 

distributed is fairly straightforward. However, datasets are often not of the same size and 

distribution. Two common methods of determining the difference are the difference of 

proportions test and the t-test of mean differences. 

The difference of proportions test is employed to determine the proportion of data that passes 

certain criteria for two separate datasets (Penn State Eberly College of Science 2018). These 

proportions are then compared to each other with the intent to determine if the difference in 

proportions is statistically significant. For example, a proportions test is able to determine 

whether a specific location experiences a higher rate of property damage crashes compared to 

other locations. 

The null hypothesis for this analysis states that the proportions between the data bins are equal. 

Simply put, the difference between the two is assumed to be zero (equation [7]). 

𝑝1 =  𝑝2 (7) 

where 𝑝1 represents the proportion from data bin 1 and 𝑝2 represents the proportion from data 

bin 2. The alternative hypothesis for this test is that 𝑝1 does not equal 𝑝2. In order to reject the 

null hypothesis, the proportions test must return a result that is statistically significant. Statistical 

significance is defined as having a p-value of 0.05 or less. The p-value is derived from a z-score, 

which is calculated by using the proportions from the two datasets (equation [8]). 

𝑍 =  
𝑝1̂ − 𝑝2̂

√𝑝̇ × (1 −  𝑝̇) × (
1

𝑛1
+

1

𝑛2
)

⁄
 (8) 
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where 𝑝̂ portrays the observed proportions from each dataset, 𝑛 is the sample size of the 

respective data, and 𝑝̇ describes the pooled proportion between the samples. In essence, the 

pooled proportion is the average proportion between the data. Equation (9) depicts the derivation 

of the pooled proportion.  

𝑝̇ =  
𝑥1 + 𝑥2

𝑛1 + 𝑛2
⁄  (9) 

In equation (9), 𝑥 simply portrays the total count of data in the respective category, while 𝑛 

depicts the sample size. 

For this analysis, a two-sided z-score was calculated in order to determine the p-value. This is 

because the proportions for dataset 1 are able to be higher or lower than the proportion for 

dataset 2. In the scenarios where the dataset 1 proportion is designated as being higher or lower 

than the dataset 2 proportion, a one-sided z-score was computed (Penn State Eberly College of 

Science 2018). 

In contrast to the difference of proportions is the t-test. The t-test was designed with the purpose 

of examining the mean and distribution between two data samples. Previously, the difference of 

proportions test was implemented in this study to determine if specific ratios in the data existed. 

Not all data is segmented in this fashion, however, and therefore the t-test is needed. For 

example, determining the difference in mean traffic volume between two locations requires a t-

test. Generally, the t-test assumes that the variance of the data samples is the same and that they 

are normally distributed. Not all of the data examined in this study met those conditions. 

Therefore, a variation of the t-test called Welch’s t-test is required. Welch’s t-test does not 

require that data samples be normally distributed, nor that their variances be equal. 

As with the difference of proportions, a null and alternative hypothesis are needed. The null 

hypothesis is that the means of the two samples are equal. The alternative hypothesis is that the 

means of the two samples are not equal. The next step dictates that a t-value be calculated using 

equation (10). 

𝑇 =  
𝜇1 −  𝜇2

√
𝑠1

2

𝑛1
+  

𝑠2
2

𝑛2

⁄
 (10) 

where 𝜇 values represent the mean for each respective sample set, 𝑠 represents the variances of 

the respective datasets, and 𝑛 signifies the sample sizes. With the t-value calculated, the p-value 

can be determined. A p-value of 0.05 once again signifies statistical significance. 
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RESULTS 

This chapter highlights the key findings of this study.  

Crash Frequency Analysis 

The weather, traffic, crash, and AVL data for each winter storm were combined to create the 

dataset for the crash frequency analysis. In total, there were 232 eligible storms. Only two of the 

storms did not contain AVL data. Because they met the winter storm criteria, however, it was 

decided to include them in the study. The summary statistics for the dataset are shown in Table 

9. 

Table 9. Summary statistics of winter storm dataset 

 Mean Std. Dev Minimum Maximum 

Crash Count (crashes) 1.84 3.41 0 22 

Average Vehicle Count (veh) 3,995 4,707 24 44,155 

Ln(Exposure) 13.35 1.03 10.82 15.53 

Road Condition 3.39 1.23 1 5.21 

Hourly Precipitation (in./hr) 0.01 0.01 0 0.06 

Total Precipitation (in.) 0.78 1.58 0 10.05 

Freezing Rain (mm) 0.02 0.06 0 0.37 

Snow (in.) 0.56 0.33 0.02 1.88 

Visibility (miles) 5.38 2 1.2 9.92 

Temperature (°F) 22.82 9.43 -2.02 37.31 

Wind Speed (knots) 9.97 4.35 0.71 24.49 

Storm Duration (hours) 9.95 7.73 0.58 37.33 

Truck Laps Traveled 4.6 3.82 0 22.59 

Truck Liquid Spreading Rates (gal/mile) 27.84 11.13 0 102.96 

Truck Solid Spreading Rates (lbs/mile) 180.78 39.53 0 297.2 

Truck Prewet Spreading Rates (gal/mile) 3.59 2.95 0 13.95 

N = 232 storm events 

The Truck Laps Traveled is the total truck distance divided by the lane miles. This was presented 

in lieu of the total truck distance traveled in order to normalize the scale among the cities. Storms 

of equal impact for separate cities resulted in drastically different miles traveled. Because all of 

the city networks were of different sizes, the results became skewed and needed to be corrected.  

To examine the interaction between weather, snowplow operations, and crashes, several plots 

were developed. Figure 12 depicts the relationship between snowfall, truck laps, and storm 

duration.  
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Figure 12. Snowfall versus truck laps 

The snowfall variable is in inches while the laps variable is in truck laps for each respective city. 

The color scheme indicates the duration in hours of the storm. The darker the red, the longer the 

storm. Conversely, the lighter the yellow, the shorter the storm. The initial expectation was that 

the snowfall verse laps comparison would demonstrate a clear relationship where the more 

snowfall there was, the more truck laps would be taken. The y-axis at near 0 laps consists of 

numerous high-snowfall storms. These data points simultaneously exhibit short storm durations. 

Several of the storms with the highest number of truck laps by no means correlate to the storms 

with the highest snowfall amounts. This shows that the storm duration plays a greater role in 

snowplow distance traveled than total snowfall. With that being said, very few high-truck lap 

storms exhibit near 0 snowfall. Overall, the correlation between snowfall and truck laps is not 

significantly clear. 

Figure 13 shows the interactions between precipitation and snowplow laps.  
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Figure 13. Worst snowfall versus truck laps 

The Worst Snow variable is categorized into several possible values, with 1 being the lightest 

snowfall and 3 being the heaviest snowfall. The color scheme and x-axis remain the same as in 

Figure 12. Many of the storms in category 0 tend to be shorter storms that result in fewer truck 

laps. This trend continues for the storms in category 3, which mostly includes long-duration 

storms and very storms few having a low number of truck laps. This suggests that the more 

intense the snowfall, the longer the storm duration. Moreover, the longer that snow falls, the 

longer that snowplows are out plowing in order to improve traffic operations.  

When examining the implications of both Figure 12 and Figure 13, it appears that storm duration 

plays a significant factor in AVL operations and in storm intensity. This assumption was 

validated by the plotting of Figure 14. 
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Figure 14. Truck solid per lane miles versus truck laps 

The color scheme and x-axis remain unchanged from the previous two figures. In Figure 14, 

snowfall is replaced by the Truck Solid Per Lane Mile metric. This is the amount of solid 

material spread divided by the total lane miles for the urban region. This unit is in pounds per 

lane mile. The relationship here suggests that the longer the storm duration, the more plowing 

and more material spreading that occurs. Because of the correlation between the solid and liquid 

materials, a similar plot would exist independent of the material type displayed. 

When controlling for the storm duration, a new trend emerged. The total solid material spread 

per lane mile was divided by the time of the storm in order to observe a comparable variable 

between events. Figure 15 displays the normalized spreading rate compared to truck laps 

traveled. 
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Figure 15. Truck solid per lane mile minute versus truck laps 

Along the y-axis are many short-duration storms that also provided a high rate of material 

spreading. This trend indicates that the longer the storm duration, the more laps there were and 

the lower the normalized spreading rates. This suggests that maintenance operations for short-

duration storms may concentrate on providing preventative maintenance by spreading material 

while longer-duration storms require more time plowing roadways instead of spreading material. 

Investigating the relationships between weather and snowplow operations paved the way for 

further understanding of the impacts of winter weather events. An important factor that has not 

yet been considered is the effect that these variables have on crash safety and traffic operations. 

A fourth dimension, crashes, was added to the figures presented above. The crash variable was 

normalized by the exposure, or traffic counts, in each city. Figure 16 and Figure 17 demonstrate 

the end result of the incorporation of the crash variable. 
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Figure 16. Snowfall versus truck laps – crash 

 

Figure 17. Truck solid per lane mile minute versus truck laps – crash 

In both graphs, the size of the circle represents a higher crashes per exposure count. In both of 

these plots, the longer-duration storms tend to have higher crash rates than the shorter-duration 
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storms. The initial conclusions from the analysis suggest that the more snowplowing that occurs, 

the higher the crash rate. These plots proved that conclusion to be erroneous. A logical reason for 

the higher crash rates may be the prolonged exposure of drivers to winter weather conditions. 

The winter events that tended to have higher crash rates also spanned a long duration. Because of 

this, the events’ impacts on traffic safety are much greater due to their greater duration. Past 

research has suggested that the time of day impacts traffic volumes. Short-duration storms may 

allow the public to alter their travel plans and avoid dangerous driving conditions. In contrast, 

longer-duration storms may not offer travelers the choice of altering their travel plans. 

Additionally, it may be the case that the longer the storm duration, the higher a driver’s tolerance 

for adverse driving conditions. These factors may have played a role in the crash discrepancy.   

Crash Frequency Model 

Determining the impacts and interactions of the AVL and weather variables proved to be a 

continuous task. Each storm event provided a unique set of variables that hindered the ability to 

quantify and group the dataset. The issue was compounded by the fact that AVL operations often 

are a byproduct of the winter storm conditions. Furthermore, each Iowa DOT garage operator 

drew from unique experience in determining the plow operations were executed.  

Because of the complex relationships between the variables, a thorough vetting was performed 

when determining the important factors in the final model. In order to fully depict the 

relationships, several key ratios were developed. The pertinent AVL variable was divided by the 

total snowfall from that storm. For example, the number of laps divided by the total snowfall 

resulted in Laps per Snow, with the units in truck laps per inch of snowfall. The reciprocal of 

each of these calculations was also performed, the result being Snow per Laps.  

Figure 18 and Figure 19 demonstrate the relationships and interpretation of results for these 

variables. 

 

Figure 18. AVL per snowfall relationship versus crash 
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Figure 19. Snowfall per AVL relationship versus crash 

Figure 18 depicts the relationship between the AVL parameter normalized by the snowfall 

parameter. A positive relationship indicates that the more laps driven, compared to the same 

amount of snowfall, the higher the crash rate. This is because the more laps driven, the larger the 

dividend of laps per inch of snowfall. Therefore, the data point slides to the right along the 

positive arrow. In contrast, a negative relationship yields the opposite description. The more laps 

driven, compared to the same amount of snowfall, the lower the crash rate. The more laps driven 

also creates a larger dividend of laps per inch of snowfall. However, instead of sliding to the 

right and up, the point slides down and to the right. 

Figure 19 reveals the relationship between the snowfall normalized by the AVL parameter 

compared to the crash rate. A positive correlation signifies that the same amount of snowfall with 

more laps produces a lower crash rate. A higher number of laps create a smaller dividend of 

inches of snowfall per lap. The data point slides to the left along the positive arrow, which move 

closer to 0 on the y-axis. Conversely, a negative correlation signifies that more laps produces a 

higher crash rate. The more laps, the smaller the dividend of inches of snowfall per lap. The data 

point slides along the negative arrow, which leads to infinity on the y-axis. 

Snowplow operations are capable of distributing various materials for the sake of route 

maintenance. The possibilities in the AVL data included solid and liquid material. Apart from 

these, variables related to the truck distance traveled were provided. The three main variables 

used for the analysis are the liquid material, solid material, and truck laps. While these variables 

concern different aspects of plow operations, a correlation matrix was developed to determine 

the relationships among the variables.  

Figure 20 presents the correlations that exist among the AVL variables. 
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Figure 20. AVL variable correlation matrix 

In this example, the snowplow variable was normalized by the total snowfall. The three resulting 

variables calculated were Solid_Per_Snow, Liquid_Per_Snow, and Laps_Per_Snow. The dark 

green color in the matrix constitutes a high correlation value. In this particular matrix, all of the 

three variables were found to be highly correlated. This pattern was illustrated in the various sets 

of snowplow categories, such as Solid/Liquid Per Lane Mile. Because of this correlation, only 

one of the variables from each group could be included in the model building.  

Figure 12 through Figure 17 highlight the intricate interactions among the data types. Because of 

these interactions, the initial modeling proved to be an elaborate task. This was compounded by 

the inability to group similar storms. The solution was to filter the data even further with the 

purpose of creating similar, and therefore comparable, storms. The new filter specified that all 

storms needed to have had at least one truck lap. Both Figure 12 and Figure 13 portray a natural 

cut off at the one-lap mark. This eliminated the low-intensity storms, or the ones that did not 

result in a heavy Worst Snow variable. This also eliminated the low-snowfall events from the 

analysis. In regards to the AVL parameters, Figure 15 suggests that using a one-lap cutoff 

provides similar snowplow and storm characteristic relationships. Many of the high-intensity 

plowing operations that occurred in the top left and the non-existent plowing operations that 

occurred in the bottom right of Figure 15 were excluded.  

The first attempt to build a crash frequency model implemented a stepwise function in RStudio. 

Simply put, a stepwise function takes all of the input variables and then determines the model 

that best follows the trend line. The results of this attempt proved disorderly. Because of the 

complex interactions between the AVL and weather variables, the outputs simply did not provide 

reasonable results. In order to build an accurate and reasonable model, a second approach was 

applied. A strategic list of weather variables was included to represent the weather variables of 

the winter storms. Subsequently, a single AVL variable was added to the weather variables with 

the intent of observing the snowplow’s interactions with the various weather variables. This 

approach was applied for each AVL variable. Ultimately, a final model was selected with the 
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intention of representing the interaction between crash frequency and the weather, AVL, and 

traffic variables.  

Table 10 presents the final model. 

Table 10. Crash frequency model 

Coefficient Estimate Std. Error Z value P-value Significance 

(Intercept) -14.530 2.386 -6.092 0.000 *** 

Ln(Exposure) 1.092 0.159 6.869 0.000 *** 

Road Condition 0.238 0.136 1.753 0.080 . 

Total Precipitation (in.) 0.109 0.076 1.431 0.153  

Wind Speed (knots) -0.012 0.027 -0.439 0.661  

Visibility (km) 0.054 0.068 0.795 0.427  

City - CedarRapids -0.577 0.390 -1.478 0.140  

City - CouncilBluffs 0.099 0.399 0.248 0.804  

City - IowaCity -1.566 0.443 -3.538 0.000 *** 

City - QuadCity -0.750 0.463 -1.619 0.106  

City - SiouxCity -0.890 0.384 -2.316 0.021 * 

City -Waterloo -0.635 0.582 -1.091 0.275  

Solid Per Snow (ton per mi.) -67.448 0.000 -2.151 0.031 * 

AIC 773.820 

 

As noted in past research, road conditions play a significant role in crash safety (Usman et al. 

2010). Road conditions were scaled from 1 to 6, with 6 being the worst, the positive estimate for 

this variable follows past findings.  

In this analysis, the city center factor was included so that any geographic trends could be 

identified. Of the eight city centers, only six are represented in the model. The seventh city, 

Ames, was taken as the baseline. The eighth city, Des Moines, did not produce any storm 

samples that passed all of the required criteria for the final analysis. Consequently, only one city, 

Iowa City, proved to be significant in terms of the model’s outcome. According to the model, 

Iowa City experiences a lower crash frequency than Ames. The final coefficient in the model 

presented is Solid Per Snow. Figure 18 presents the methodology to interpret the results for this 

variable. Because the estimate is negative, the more solid material deployed, the lower the crash 

frequency. This variable also proved to be statistically significant.  

Crash Severity Analysis 

The crash severity model encompassed every crash that occurred on Iowa DOT-maintained 

roadways. Because the data were filtered by weather conditions and roadway conditions, it is 

possible that some crashes occurred outside the presence of a winter storm event. In total, 1,372 
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crashes met the criteria threshold and were able to be analyzed. Table 11 contains a description 

of the data.  

Table 11. Crash severity data description 

 n mean Standard Deviation min max 

Plow Duration (Hours) 1,370 37.97 15.4 0 102.54 

Rural / Urban 1,370 1.39 0.49 1 2 

AADT (Vehicles) 1,368 1,668.42 1,704.08 0 11,394.77 

Storm Tag (1 - Storm, 0 - Non-

Storm) 
1,370 0.47 0.5 0 1 

Storm Duration (Hours) 650 7.98 5.07 0.58 21 

Total Passes (Pass Count) 1,370 4.89 4.11 1 42 

Before Passes (Pass Count) 1,370 2.13 2.43 0 29 

After Passes (Pass Count) 1,370 2.76 2.59 0 27 

Nearest Pass After (Hours) 1,192 0.7 0.56 0 2 

Nearest Pass Before (Hours) 974 -0.65 0.52 -1.99 0 

Before/After Passes (Ratio) 1,192 0.83 1.06 0 9 

Property Damage (Dollars) 1,370 8,115.92 12,451.03 200 250,000 

Total Precipitation (Liquid in.) 1,369 0.14 0.35 0 7.14 

Wind Speed (Knots)  1,369 5.81 2.89 0 19 

Temperature (Degrees) 1,369 19.41 12.09 -16.10 48 

Visibility (Miles) 1,369 8.96 5.99 0.4 16.09 

Relative Crash Time - Storm  

(Normalized Percent) 
650 0.42 0.28 0 1 

Relative Crash Time - AVL  

(Normalized Percent) 
1,368 0.34 0.27 -1.67 1.47 

Speed Limit (Miles Per Hour) 1,370 61.5 10.8 20 70 

 

The Plow Duration variable indicates the amount of time that AVL operations were ongoing, 

while the storm duration was the hours that the winter event lasted. Most storms had longer plow 

durations than storm durations, with the plow durations almost four times those of the storms. 

Because blowing snow is a common after effect, plow operations can typically last much longer 

than the storm itself. This indicates that pavement conditions were deteriorated and had an effect 

on driver safety. Blowing snow also causes reduced visibility, which contributes to a greater 

crash risk as well. One distinction between the storm and snowplow durations that needs 

clarification is the methodology involved. Storm events could not have a gap in precipitation 

greater than 20 minutes. Snowplow operations had no such distinction. In general, some 

snowplow operations most likely spanned the duration of several winter storm events. 

Approximately 60 percent of all crashes occurred in the rural regions of Iowa. Approximately 52 

percent of crashes occurred during a storm. During winter events, traffic volumes decreased. In 

spite of this reduction, a large number of crashes in this study occurred during a storm. 
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Meanwhile, half of all crashes occurred outside of a storm’s duration. The number of crashes that 

occurred outside of storm events also signifies that pavement conditions and visibility have a 

significant effect on safety. Perhaps the traveling public does not recognize that driving 

conditions are still adverse despite the fairer weather conditions after a storm. Both the Relative 

Crash Time – Storm and Relative Crash Time – AVL variables indicate that crashes take place 

earlier in the respective events. 

Each crash averages approximately two plow passes beforehand and just under three passes 

afterwards. The results suggest that most crashes occur on routes that have a moderate to high 

plow pass frequency. Because the cycle time is two hours, the Total Passes variable would need 

to be at approximately three to be at the standard cycle time, the first pass being two hours before 

the event, the second being at the time of the event, and the third being two hours after the event. 

For the Nearest Pass Before and Nearest Pass After variables, the nearest pass occurs roughly 45 

minutes before/after the crash time. 

The FHWA reports that approximately 0.4 percent of winter crashes result in a fatality (FHWA 

2018). The data observed in this study show that approximately 0.3 percent of all crashes were 

fatal. By performing a difference of proportions test, it was determined that the proportion of 

fatal crashes observed nationwide resembles that seen in Iowa.  

In total, 1,372 crashes occurred over the winters of 2016–2017 and 2017–2018 (Figure 21). 

Close to 80 percent of all crashes were classified as property damage only and just over 90 

percent of crashes were classified as either property damage only or possible/unknown.  

 

Figure 21. Crash severity table bar plot 

All Iowa crash data spanning 2016 to 2018, regardless of weather or season, were compiled in 

order to compare the difference in crash severity proportions between winter crashes and all 

crashes.  
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Table 12 displays the results of the proportions test between the winter crashes and all Iowa 

crashes. 

Table 12. All crashes – winter crashes 

Crash Severity Winter Proportion All Proportion P-value 

Fatal 4 0.003 147 0.006 0.171 

Major 10 0.007 437 0.017 0.006 

Minor 77 0.056 1908 0.075 0.011 

Possible 180 0.131 3760 0.147 0.107 

PDO 1101 0.802 19330 0.756 0.000 

Sum 1372 1.000 25582 1.000  

 

The winter crashes had a higher proportion of PDO crashes compared to all crashes. 

Furthermore, the winter crashes had fewer major and possible/unknown injuries. The general 

trend suggests that Iowa follows the previously established pattern of crash severity proportions.  

Snowplow Pass Time Interval 

The complexities of the interactions between winter maintenance operations and crash safety 

present unique problems. Researchers at Iowa State University attempted to elucidate these 

interactions by displaying temporal tables (Hans et al. 2018). A similar method was employed 

for the data in this study (Figure 22, Figure 23, and Figure 24). 

 

Figure 22. Snowplow pass to crash time classification – Interstate routes 
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Figure 23. Snowplow pass to crash time classification – US routes 

 

Figure 24. Snowplow pass to crash time classification – Iowa routes 

Each graph represents data from both winter seasons combined. Both axis labels represent hours. 

The y-axis represents the nearest recorded snowplow pass that occurred after the recorded crash 

time. The further away from 0 the point is, the later in the day the plow pass occurred. Any point 

that lies directly on top of the y-axis signifies that there was no plow pass before the crash. The 

further away from 0, the longer it took for the next snowplow pass to occur. The x-axis shows 

the absolute value of the nearest plow pass that occurred before the recorded crash time. Because 

this value is displayed as an absolute value, the closer to 0 the value is, the closer to the time of 

the crash it is. Conversely, the further away from 0 the value is, the earlier in the day the plow 

pass occurred. Any point that lies directly on top of the x-axis represents a crash that had no 

plow pass occur after the crash. A point that lies at (1.5, 0.5) specifies that the closest plow pass 
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before the crash occurred 1.5 hours beforehand and the earliest subsequent plow pass occurred 

30 minutes after the crash. 

Figure 22, which represents Interstate crashes, contains the highest total number of crashes 

compared to the other routes. Interstates produce more traffic volumes than other road types, 

especially when considering the presence of winter driving conditions (Datla et al. 2013). Most 

of the crashes reside in the lower left corner of the plot. This area indicates that a plow pass 

occurred close to the time of the crash and that the crash location experienced a high plow pass 

frequency at the time of the crash. These locations may have significant traffic volumes, which 

constitutes a higher maintenance priority and therefore more snowplow passes. Because 

Interstates are more frequently traversed roadways, there are often multiple lanes of travel in 

each direction. Because no distinction could be made as to the lane in which each event occurred, 

these plow passes may ultimately have had little impact on the crash itself. One significant 

finding is that a high proportion of crashes did not receive a plow pass before the crash occurred. 

This signifies that crashes occur early in winter events.  

While the pattern in Figure 23, which represents US routes, closely resembles the pattern of 

Interstate routes, Figure 24 tells a different story. Figure 24 details the crashes that occurred on 

Iowa routes. It was not surprising that this route type contained the fewest total number of 

crashes of the three route types. Iowa routes contain lower traffic volumes, especially during 

severe events, than the other route types. Many crashes still occurred on these routes without the 

occurrence of a plow pass before the event. However, the spread of crashes is much larger and 

diverse than those of the previous routes. For example, a greater portion of crashes occurred that 

were not relatively close to a before or after plow pass. This signifies that these routes are 

receiving plow passes much less frequently. This may be a result of the lower priority for these 

routes compared to Interstates and US routes, or it may be the result of having fewer lanes and 

therefore fewer plow passes.  

To further illustrate the interactions between plow pass frequency and crashes, the plow pass 

times were categorized and displayed in heat maps as well as percentage tables (Figure 25, 

Figure 26). 

Figure 25, Figure 26, and Figure 27 represent all of the crashes from both winters and all of the 

route types combined. 



42 

 

Figure 25. Snowplow pass time interval heat map 

 

Figure 26. Snowplow pass time interval percentages 
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Figure 27. Snowplow pass time interval count values 

Five time bins were created for each axis. Each bin contains 30 minutes of time until the two-

hour limit was reached. The fifth bin represents null values, or crashes for which no snowplow 

pass occurred either before or after the crash. In Figure 25, Figure 26, and Figure 27, the nearest 

pass before is represented as a negative value. The time of the crash is represented by the time 0, 

and the further away from 0, or the more negative the number, the earlier in the day the crash 

occurred. 

In Figure 25, the darker the color, the more crashes that occurred in that cell. The majority of 

crashes fall within the top left corner, which corresponds to the bottom left corner of the previous 

tables. Furthermore, the heat map categorization allows for a breakdown of percentages. Figure 

26 displays each cell as a percentage of all crashes. Along with the values in the cells is a total 

for the row and column for each major category. One-third of all crashes took place before a 

snowplow had passed. This is compared to just 14 percent of crashes where no snowplow pass 

took place after the crash. 

These representations of the data suggest that the most dangerous scenario is when a plow has 

recently passed and is about to pass as well. In other words, the highest density of crashes occurs 

in very close temporal proximity to plow passes. This conclusion is contrary to conventional 

wisdom, which holds that a higher plow pass frequency is unlikely to lead to more crashes. 

A more thorough inspection was required in order to determine potential explanations as to why 

most crashes fall within the nearest plow pass quadrant. The data from the “0” Before Passes and 

the “-0.5 to 0.0” row were extracted for further analysis. This dataset was compared to the 

dataset of observed crashes for the crash severity analysis. After the creation and examination of 
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histograms and proportions, two variables provided more in-depth knowledge. The first was 

plow pass frequency. The Total Passes, Before Passes, and After Passes variables were compared 

between the two datasets. A two-tailed difference of proportions test was performed for each of 

the categories. It was found that the crashes in the extracted data experienced a higher plow pass 

frequency than the other crashes. The second variable was the route type. By means of a t-test of 

means, it was determined that the extracted data have a higher portion of Interstate crashes. 

Interstates tend to have more plow passes, by virtue of their greater number of lanes and higher 

priority, than other roadways. Therefore, the pass frequency and Interstate variables go hand in 

hand.  

The previous graphs represent the snowplow conditions at the time of each crash. Because 

crashes are rare events, the snowplow conditions presented are only snapshots of the overall 

winter storm. The predominant snowplow conditions of the storm in its entirety are unknown. In 

other words, plow pass proximity may vary across the span of the maintenance operations and 

the winter storm event. In order to compare the effect of plow pass proximity on crashes, an 

understanding of the conditions at the same location during non-crash time periods is necessary. 

In other words, how representative is the plow pass frequency around the crash events compared 

to the plow pass frequency conditions throughout the storm. By comparing the observed plow 

pass frequency to the storm-wide frequency, any trends or differences in the data could be easily 

identified. It was discussed in the Methodology chapter that a list of plow operation events was 

compiled. These events were overlapped for each respective crash event. The following process 

was developed to establish the continuous conditions of the plow operations: 

1. Start at time 0 of the snowplow operations event 

2. Filter snowplow passes within two hours before and after the crash 

3. Add count to snowplow pass time interval category 

4. Add 30 minutes to time 0 

5. Repeat steps 2 through 4 until snowplow operations event concludes 

6. Repeat for each crash event 

By following this method, a representation of snowplow proximity throughout the storm was 

possible. Because the categories are divided into 30-minute segments, aggregating the plow 

conditions by this interval offered continuous coverage throughout the event. 

Figure 28, Figure 29, and Figure 30 represent the final compilation of the storm-wide conditions 

for all crashes. The formats of these tables resemble those of their complementary tables (Figure 

25, Figure 26, and Figure 27). 
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Figure 28. Snowplow pass time interval heat map – storm-wide 

 

Figure 29. Snowplow pass time interval percentages – snowplow operation-wide 
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Figure 30. Snowplow pass time interval counts – snowplow operation-wide 

The snowplow operation-wide conditions suggest that a majority of crashes also occur in the 

recent plow pass interval quadrants, as in the previous analysis. In order to determine the precise 

differences, a difference of proportions test was performed on each corresponding cell. For 

example, the cells at the intersection of column “0.0 to 0.5” and row “-0.5 to 0.0” for the crash 

data and storm data were compared. This process was followed for each individual cell. The 

results are displayed in Table 13. 

Table 13. Difference of proportions test – plow pass intervals 

Classifier 

Before \ After 

0.0 to 

0.5 

0.5 to 

1.0 

1.0 to 

1.5 

1.5 to 

2.0 Null 

Grand 

Total 

0.0 to 0.5 0.017 0.076 0.125 0.876 0.053 0.000 

0.5 to 1.0 0.624 0.657 0.045 0.229 0.035 0.037 

1.0 to 1.5 0.442 0.844 0.496 0.098 0.034 0.266 

1.5 to 2.0 0.011 0.795 0.857 0.982 0.039 0.004 

Null 0.137 0.005 0.000 0.000 NaN 0.000 

Grand Total 0.230 0.984 0.017 0.000 0.000 NaN 

 

This table represents the p-values from the proportions test. A value of less than 0.05 indicates 

that a statistically significant difference in the proportions was observed. The general trend 

observed earlier (Table 12) was that the “0.0 to 0.5” and the “0.5 to 1.0” Classifier Before rows 

for the observed data had fewer crashes than the storm proportions estimated. Roughly 31 

percent of crashes are in the “0.0 to 0.5” Classifier Before row, while the storm-wide analysis 

estimated that scenario to be almost 38 percent. In contrast, the storm-wide analysis estimated 

that roughly 20 percent of crashes occur without the presence of a snowplow pass beforehand. In 

actuality, that same scenario represented almost one-third of all crashes. This suggests that the 
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closer the plow pass occurs to the time of the crash, the greater the safety benefit gained. 

Conversely, the lack of a plow pass beforehand significantly increases the crash risk. 

Snowplow Pass Frequency 

Another temporal table representation presented in previous work was a snowplow pass 

frequency table (Hans et al. 2018). The methodology is that a four-hour window is placed around 

each crash. The total snowplow passes are then counted and categorized as either before or after 

passes.  

Figure 31 represents the heat map of aggregated data for snowplow pass frequency. The y-axis 

represents the number of passes before the crash, while the x-axis represents the number of 

passes after the crash. The darker the color, the higher the crash density for that category.  

 

Figure 31. Snowplow pass frequency heat map 

Figure 32 represents the same data, except in percentage form. 
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Figure 32. Snowplow pass frequency percentages 
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The evidence from these figures suggests that crashes take place early in winter events. The 

majority of crashes fall within the top left quadrant of Figure 31. This area represents crashes 

that occur before maintenance operations begin. Furthermore, nearly half of all crashes take 

place before a second snowplow pass has occurred. A possible interpretation of these results is 

that these could be short storms that do not necessitate heavy maintenance operations from Iowa 

DOT personnel. The higher the plow pass frequency, the lower the total crash count. This could 

be a result of plowing operations providing a greater safety benefit. The alternative is that very 

high plow pass frequencies are not common.  

A more thorough inspection was required in order to determine potential explanations as to why 

most crashes fall within the low plow pass frequency quadrant. The data from the 0 Before 

Passes and the 1 After Passes cell were extracted for the purpose of further examination. The 

extracted data were contrasted with the observed data, as was performed for the previous 

analysis. In this analysis, the major contributing variables were the route type, crash severity, 

nearest plow pass, and relative crash time to AVL operations. It was discovered that a higher 

proportion of crashes occurred along US and Iowa routes for the extracted data compared to the 

crash data. Correspondingly, the crash data contained a higher proportion of Interstate crashes 

than the extracted data. When comparing the mean crash severity scale between the datasets, it 

was found that the extracted dataset contained more severe crashes than the observed dataset.  

The mean values of the third variable, the nearest plow pass, were compared for both datasets as 

well. It was found that the crashes in the extracted dataset, or the 0 Before Passes and 1 After 

Passes dataset, saw plow passes come much later after the crash than the crashes in the observed 

dataset. A comparison of the datasets for the fourth and final variable, the relative crash time to 

AVL operations, suggested that the crashes from the extracted dataset occurred much earlier than 

the observed crashes.  

The higher-severity crashes can be linked to the plow pass frequency as well as the route type. 

Because the US and Iowa routes receive less winter maintenance attention, the crash risk on 

these routes can be expected to be higher than on Interstate routes. Furthermore, because no plow 

passes were recorded before the crashes on these routes, it can be assumed that the road 

conditions tended to be more deteriorated and therefore less safe. The late plow pass time may 

have several explanations. First, because the routes are non-Interstate, the snowplows may 

simply not be prioritizing these locations. Because of this, the snowplows are not prepping these 

roadways before a storm as thoroughly as other roadways. The evidence did suggest that these 

crashes occur much earlier during the storm event than other crashes. This may mean that 

travelers underestimate the severity of the winter event at the beginning of the storm or the 

worsening crash safety levels. 

As with the plow proximity data, a storm-wide analysis was conducted to determine the plow 

frequency conditions during non-crash times. Correspondingly, the same process was applied, 

with the exception being that a total pass count was taken in lieu of the nearest pass. 

Figure 33 and Figure 34 represent the storm-wide conditions for snowplow pass frequency. 



50 

 

Figure 33. Snowplow pass frequency heat map – storm-wide 
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Figure 34. Snowplow pass frequency percentages – storm-wide 
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Approximately 90 percent of all possible time intervals fell within five before and five after 

passes. Moreover, over 60 percent of time intervals fell within three before and three after 

passes. Accordingly, most of the plow event durations in Figure 33 fall within regions with low 

to moderate plow pass frequencies. One limitation of this analysis is that there is no distinction 

made as to the number of lanes.  

Table 14 represents the p-values from the proportions test for the plow pass frequency data. 
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Table 14. Difference of proportions test – plow pass frequency 

Before \ After 

Passes 0 1 2 3 4 5 6 7 8 9 10+ Grand Total 

0  2.45E-11 1.13E-09 0.004914 0.000420 0.000376 0.157097 0.685067 0.505930 0.937936 0.132656 2.11E-30 

1 0.047621 0.079255 0.676843 0.266943 0.039887 0.896161 0.244455 0.724425 0.168558 2.35E-05 0.001126  

2 0.090952 0.210726 0.945940 0.436573 0.694995 0.359406 0.082552 0.354727 0.848965 0.726392 0.944551 0.010405323 

3 0.395459 0.023128 0.463194 0.372201 0.681264 0.014000 0.616141 0.520027 0.817860 0.417650 0.120411  

4 0.844489 0.233561 0.280097 0.994653 0.346025 0.514347 0.740074 0.479254 0.790770 0.432297 0.155020  

5 0.127917 0.063676 0.336151 0.006764 0.887968 0.884592 0.792876 0.112779 0.675100 0.289511 0.006461  

6 0.781352 0.388292 0.155381 0.393635 0.109865 0.789038 0.617874 0.979714 0.842561 0.855903 0.079714 0.251739509 

7 0.647049 0.945187 0.698924 0.246002 0.273992 0.824833 0.819480 0.655731 0.352733 0.211158   

8 0.937936 0.817530 0.538358 0.891543 0.736765 0.865176 0.010307 0.341890 0.401437    

9  0.704906 0.206402 0.993641 0.461601 0.865176 0.778239 0.910157 0.969215    

10+ 0.296009 0.626230 0.283192 0.998457 0.281125 0.241752 0.505462 0.285279 0.848965 0.355517 0.747763 0.14339867 

Grand Total 0.001866 0.317437 0.053395 0.224654 0.734552 0.055615 0.838732 0.903060 0.811312 0.115815 0.057930  
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As in the previous analysis, a value of less than 0.05 conveys that a statistically significant 

difference in the proportions was observed. Many observed crashes occurred with a relatively 

low plow pass frequency. While the storm-wide conditions appeared to exhibit a similar trend, 

the test of proportions detailed several significant differences. First, the storm-wide conditions 

analysis estimates that just under 20 percent of crashes would occur with 0 snowplow passes 

beforehand. By comparison, approximately one-third of all crashes in the observed dataset had 0 

plow passes beforehand. The second main difference is in the proportion of crashes that occur 

with several snowplow passes beforehand. The 2 Before Passes row for the storm-wide 

conditions data estimates that just under 22 percent of crashes would fall in this category. In 

reality, the observed crash ratio for that same scenario occurred in just under 19 percent of 

crashes. The results suggest that the more plow passes that occur before the crash, the safer the 

conditions will be. However, a lack of snowplow passes represents a greater safety risk than 

projected. These results similar to the findings from the plow pass intervals analysis. 

Crash Severity Model 

The first step in creating the crash severity model was to evaluate the interactions of all the 

variables. The most commonly used method to determine the interactions is a correlation matrix. 

This matrix allows researchers to easily determine which variables are redundant and which 

variables may prove the most significant in the final model. In this study, determining the 

correlations among the variables allowed the best variables for producing a simple and effective 

crash severity model to be determined.  

Figure 35 shows the correlation matrix for the AVL variables.  

 

Figure 35. Snowplow correlation matrix – crash severity 
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Each row, or the y-axis, represents a specific snowplow parameter. The same variables are 

arrayed along the x-axis as well. Each row’s variables intersects with every other column’s 

variables to form the cells of the matrix. Therefore, each cell represents one variable from the y- 

and x-axis, respectively. The darker or bluer colors represent a higher correlation among the 

variables. The center of each cell displays the correlation value as well. The further away from 

zero the value is, the greater the correlation that exists. The dark blue cells running diagonally 

through the matrix represent the intersection of identical variables from the y- and x-axes. 

Furthermore, each cell mirrored across from the diagonal line represents the same data. 

The most highly correlated data were the Before Passes with the Before/After Ratio. This 

follows intuition, as the total before passes constitute a portion of the Before/After Ratio 

variable. Oddly enough, the total after passes did not demonstrate a correlation with the 

Before/After Ratio variable. The reason is most likely that crashes happen early in winter events. 

This implies that the before passes carry a significantly larger weight than the after passes 

because they have a more direct impact on crashes. 

Because not all crashes occurred during a storm event, the weather variables did not prove 

important for those crashes that lay outside a storm event. With the inclusion of weather 

variables, the model becomes skewed and misrepresents the effect of weather on crash safety. 

For this reason, the weather variables were not included in this section of the analysis.  

An ordered logit model was employed in order to create the crash severity model. The model 

was estimated using the RStudio software. RStudio includes a stepwise function that computes 

the most accurate model possible given the data variables. Table 15 reveals the final crash 

severity model. 

Table 15. Crash severity model 

Coefficient Estimate Std. Error z-value p-value Significant 

Seasonal AADT (vehicles) 1.25E-04 5.09E-05 2.458 0.014 * 

Nearest Pass After (hrs) 3.27E-01 1.72E-01 1.902 0.0572 . 

Relative Crash Time to AVL 

(normalized scale) 

-8.51E-

01 
4.01E-01 -2.123 0.0337 * 

Iowa Route 7.87E-01 3.11E-01 2.532 0.0113 * 

US Route 3.79E-01 2.29E-01 1.657 0.0976 . 

 

The Seasonal AADT represents the seasonally adjusted AADT for the crash location. The 

Nearest Pass After represents the most recent plow pass that occurred after the crash event. The 

Relative Crash Time to AVL represents the crash time relative to the beginning of the AVL 

operations. The Iowa Route and US Route coefficients originate from the Iowa DOT 

maintenance route road classification. There is an additional route type, Interstates, that is not 

displayed in the model. The reasoning is that Interstate routes were taken as the baseline for the 

model. Therefore, the values for the Iowa Route and US Route coefficients are relative to the 

Interstate route (Charpentier 2013). 
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Marginal effects were computed to show the effect that each variable has on the crash severity 

type, as shown in Table 16. 

Table 16. Marginal effects of the crash severity model 

Coefficient PDO 

Possible 

Injury 

Minor 

Injury 

Fatal/Major 

Injury 

Seasonal AADT (vehicles) 0 0 0 0 

Nearest Pass After (hrs) -0.048 0.032 0.014 0.003 

Relative Crash Time to AVL 

(normalized scale) 
0.126 -0.082 -0.036 -0.008 

Iowa Route -0.141 0.086 0.044 0.01 

US Route -0.059 0.038 0.017 0.004 

 

According to this table, Seasonal AADT has a consistent effect across the crash types. The closer 

the nearest after pass is from the crash, the less severe the crash, and vice versa. This could imply 

that the further the plow pass from the crash, the lower the plow pass frequency. With a low pass 

frequency, roadway conditions worsen. The further along in the AVL operations, the less severe 

the crash tends to be. Early in plow operations, the winter storm may be in full effect, which 

impedes driver safety. Furthermore, the more time that passes, the barer the roadway surface 

becomes. It appears that US routes and Iowa routes pose a greater crash severity risk than 

Interstate routes. Interstate routes are well traveled and therefore well plowed. With a higher 

plow frequency, the roadway condition will return to bare conditions much faster. 
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CONCLUSIONS  

Much research has attempted to determine the impacts of weather events on mobility. As more 

knowledge has been gained, attention has turned to quantifying the impacts of winter 

maintenance operations on safety. This project studied the relationships between weather, safety, 

and maintenance operations. 

Because inclement weather has demonstrated such a profound impact on safety and mobility, 

attempts to mitigate this problem have been numerous. In recent years, the Iowa DOT has 

collected data pertaining to weather, crashes, and maintenance operations. Furthermore, the data 

collected have been highly granular. Because of the amount of detail in the data, a thorough 

examination of the interactions between all three issues has become possible. In order to 

demonstrate the interactions between safety, weather, and maintenance operations, visualization 

tools were implemented to capture as many of the interactions as possible. Additionally, a crash 

frequency model and a crash severity model were developed to quantify the safety benefits of 

maintenance operations. 

It was found that a roughly fifty-fifty split of winter weather-related crashes occurred during a 

winter storm and after a winter storm. Because a large portion of crashes occur outside of a 

winter event, several factors may be at work. First, road conditions proved to be a major factor in 

crashes. When winter storms end, plow operations often continue for long stretches of time in 

order to clear the pavement surface. Because of this extended exposure of traffic to adverse 

pavement conditions, crash counts trend higher. The second factor is the erroneous perception of 

safety by travelers. Many associate unsafe driving conditions with present precipitation. When 

the storm event ends, many people may gain a false perception of the crash risk. This leads 

travelers to drive at higher speeds and proceed less cautiously than needed. In either case, the 

road conditions play an integral role in crash safety. 

Another trend in the crash data analyzed revealed that crashes resulting from winter events tend 

to be less severe than other crashes. Compared to all observed crashes in the same timeframe, the 

2016–2018 winter crashes had a greater proportion of PDO crashes and a lower proportion of 

major injury and possible injury crashes. The prevailing theory on this phenomenon is that travel 

speeds are lower during winter events, thus decreasing the potential for severe crashes. 

With respect to the snowplow data, the initial findings suggested that snowplow parameters were 

directly correlated to the duration of the winter event. When long storm events occur, the 

distance in miles traveled by snowplows is inherently greater, and more material is spread. 

Additionally, the longer-duration storms tended to have more intense weather conditions at 

various points in the storm. Meanwhile, as the duration of a storm increases, the opportunity for 

a higher crash count exists. Because of this relationship, the natural tendency is to correlate 

higher crash counts and crash frequencies with higher AVL parameter values. While 

counterintuitive, the data suggest such a conclusion.  

Because of the depth of data available, a deeper analysis was conducted and deeper relationships 

were discovered. An analysis of various ratios produced a clearer picture of the relationship 
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between snowplow parameters and crash safety. When controlling for weather variables, the total 

solid material spread by the plows normalized by the total snowfall produced a promising 

interaction: the more solid material spread, the greater the safety benefit.  

Many winter crashes were found to be temporally located near a snowplow pass either before or 

after the plow pass. Many of these crashes occurred along Interstate routes. These routes 

generally consist of several lanes and are plowed at a higher frequency than other routes. 

Because these routes are plowed at a high frequency, most of the crashes on these routes 

inherently occur in close proximity to a plow pass. While Interstates had a high proportion of 

crashes that occurred near a plow pass, Iowa routes experienced a different trend. These crashes 

tended to occur when plow passes were temporally further away from the time of the crash. 

Because snowplow passes can provide a safety benefit, it was expected that these routes would 

be less safe than Interstate routes. The crash severity model also provided evidence for this point. 

The US and Iowa routes proved to have a higher propensity for severe crashes than the Interstate 

routes according to the crash severity model. 

When determining the difference of proportions between observed crashes and storm-wide 

conditions, several key interactions were noted. Almost one-third of all crashes occurred before a 

snowplow pass was recorded. The proportion of crashes that occurred without a snowplow pass 

beforehand was significantly higher than the theoretical proportion derived from the storm-wide 

conditions analysis. Conversely, the proportion of observed crashes that occurred with several 

snowplow passes before the crash was significantly lower than that predicted by the storm-wide 

conditions analysis. These relationships offer evidence that the greater the number of snowplow 

passes that occur early in the storm, the fewer the crashes.  

Several limitations restricted the analysis. A major factor in determining the interactions among 

the variables examined in this study is the ability to quantify similar groups. Because the 

quantification of winter storms proved difficult, a more thorough investigation was not possible. 

In addition, the limited number of RWIS sensors restricted the scope of the study. The crash 

severity model was not able to control for the effects of the road conditions. Another limitation 

was the quality of data. A number of crashes along the I-80/I-35 corridor could not be attached to 

a specific route and direction and therefore could not be included in the crash severity model. 

Additionally, non-precipitation based winter weather events were not analyzed in the crash 

frequency model. For example, blowing snow can cause hazardous driving conditions across 

Iowa. Because of time and resource constraints, these events could not be incorporated into that 

part of the study. 

In regards to the plow pass frequency analysis, attempting to normalize the variables by the 

number of lanes may provide greater insight. Many of the high-frequency pass locations 

occurred along Interstate routes, which always have multiple lanes. Exploring this relationship 

between plow pass frequency and number of lanes may provide more insight into how each plow 

pass impacts safety. In the storm-wide analysis, crashes that occurred after the end of the storm 

were not included in the analysis. Because the ratio of storm to non-storm crashes was 

approximately 50-50, an underrepresentation of crashes may be occurring. By extending the time 

filter after the storm, a more complete picture of the data may appear.  
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Ultimately, this project provided a greater understanding of key relationships among weather, 

snowplow operations, and safety. These key findings can help better inform decision makers 

about how maintenance operations impact safety.  
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