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1. INTRODUCTION 

1.1 Motivation for the Study 

The allocation of resources for highway improvements is an essential activity for transportation 

agencies. Numerous factors go into the decision-making process. One of these factors is the 

quality of operations on highway facilities: for example, whether adequate capacity exists on 

various parts of the highway network in light of current demands. This is a separate 

consideration from making improvements to address pavement deterioration or safety concerns. 

The Highway Capacity Manual (HCM) has for many years been one of the most commonly used 

methodologies for determining level of service (LOS) for sections of highway, using mainly 

traffic counts as its input data in combination with information about roadway geometric 

characteristics. The HCM process is often undertaken when planning a new facility, and 

although in theory the methodology could be used to estimate LOS across an agency, this is not 

done in practice. Rather, increases in traffic volume in combination with anecdotal knowledge or 

public reports of congestion tend to draw attention to certain facilities in need of operational 

improvement. 

In Iowa, the safety improvement candidate list (SICL) has been used for about 20 years to 

identify roadway locations that have disproportionate numbers of crashes or crash severity 

(Hallmark et al. 2002). The creation of that list helps fulfill the Iowa Department of 

Transportation (DOT) mission to improve highway safety as well as meet a federal requirement 

to identify locations that have high crash rates. Until relatively recently, an analogous federal 

requirement to evaluate the operational characteristics of roadways did not exist. However, in 

2012, the passage of the Moving Ahead for Progress in the 21st Century Act (MAP-21) 

introduced provisions for performance evaluations. The Federal Highway Administration 

(FHWA) established a series of performance measures that were first published in a 2014 

proposed rule that obliged states to calculate specific performance measures using the National 

Performance Measures Research Data Set (NPMRDS), a set of five-minute average speeds 

obtained from a private sector vendor and provided to state DOTs (FHWA 2014). At the same 

time, the FHWA programs have increasingly emphasized performance-based management (Day 

et al. 2020, FHWA 2021). 

In light of the increasing emphasis on performance-based management driven by federal 

initiatives, as well as to better allocate scarce resources to locations having the greatest need, this 

research seeks to develop an operational improvement candidate list (OICL), analogous to the 

SICL, using data available for creation of such a list. Given that the Iowa DOT already has 

mature practices for monitoring interstate highway mobility (Iowa DOT 2016), this research 

focuses on the evaluation of signalized, non-limited access highways. This report contains a 

review of potential data sources. Two data sources were selected based on their availability and 

applicability toward development of an OICL. One of these was probe vehicle segment speed 

data, which the Iowa DOT already procures primarily to support monitoring interstate 

performance but which also extends to non-freeway facilities. The other was high-resolution data 

used to support automated traffic signal performance measures (ATSPMs), which has emerged 

in recent years as a means of obtaining detailed operational data from signalized intersections. 
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1.2 Organization of the Report 

This report has six chapters. Chapters 2–5 contain most of the technical content of the report and 

are organized as follows: 

• Chapter 2 presents a review of existing data sets, which reviews legacy data sets, currently 

available data, and emerging data sets. The chapter provides some description and examples 

of segment speed data and high-resolution data, which were adopted for use in later analysis 

tasks. 

• Chapter 3 uses segment speed data to conduct a performance comparison of 250 signalized 

corridors across the state of Iowa. Their performance in 2019 and 2020 were compared, and 

the corridors were ranked according to a performance index (PI) based on travel time and 

travel-time reliability. 

• Chapter 4 uses high-resolution data for two studies. In the first study, data from 150 

intersections in the Cedar Rapids, Iowa area were used to rank intersections according to a 

few different performance measures that investigate the quality of capacity ( or “green time”) 

allocation at those intersections. In the second study, corridor segment speed data were 

compared with measurements of percent on green (POG) from high-resolution data at a few 

intersections in the Dubuque, Iowa area to determine whether the outcomes of the two data 

sets correlate. Such a comparison has not been done before. 

• Chapter 5 presents the development of an OICL for the case study of Cedar Rapids, where 

there is extensive coverage of both the segment speed data and the high-resolution data. The 

corridor and intersection metrics presented in the previous chapters were combined to yield a 

composite metric that takes both progression and capacity utilization into account. This was 

used as the basis for developing an OICL for 21 corridors in the Cedar Rapids area. 

1.3 Summary of Findings 

The main findings of this study are summarized as follows: 

• The study demonstrated the feasibility of using a combination of segment speed data and 

high-resolution data to establish an OICL. A preliminary analysis was undertaken to develop 

an OICL for corridors in the Cedar Rapids area. 

• A ranking of 250 signalized corridors across the state was carried out using probe vehicle 

segment speed data. 

• A ranking of 150 signalized intersections in Cedar Rapids was carried out using high-

resolution controller event data. 

• The first study directly comparing signal performance measures from high-resolution data 

(specifically the POG and volume-to-capacity [v/c] ratio) with segment speed data was 

carried out, finding that the two data sets exhibit correlation when models are adjusted by 

day-of-week and time-of-day variables. 
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2. REVIEW OF DATA SOURCES 

2.1 Introduction 

This chapter examines different data sources that could be applied to the problem of developing 

an OICL. A wide range of available data is examined, including older data sources that have 

been traditionally used for various traffic management applications, data sets that have emerged 

in the past 15 years and are currently in or approaching common and widespread use, and 

emerging data sets that are anticipated or just now coming to market at the time of the study. 

2.2 Conventional Traffic Monitoring 

Before reviewing more recent automated data sets with the potential for system-wide, automated 

traffic monitoring, it is worthwhile to briefly discuss the recent state of the practice. Historically, 

the most widely used type of data for traffic monitoring has consisted of traffic count and 

classification data. Such data are usually obtained from limited time periods by temporary 

placement of automatic counters or by manual counting (especially at intersections where 

pedestrians are also counted). Given the limited time frame and long time periods between 

updates, such data are most useful for planning applications. Permanent counting stations are 

used by most agencies at selected locations to establish a continuous count. These data are used 

to establish adjustment factors for converting short-term counts elsewhere into annual average 

daily traffic (AADT). Automatic vehicle classification is also sometimes possible. A similar type 

of application is weigh-in-motion recorders, which record vehicle count and classification as 

well as vehicle weight, often for overweight enforcement as well as to estimate total pavement 

loading. These permanent installations could potentially be used to obtain real-time counts; 

however, they are typically only available at a small portion of the total system and are more 

commonly used on freeways. For traffic operations, count data are frequently used to track 

patterns in traffic flows over time and to act when changes are observed (FHWA 2016, Turner et 

al. 2010). 

A limitation of this existing practice is the fact that short-term counts collected at periodic 

intervals are generally unable to capture the day-to-day variation in conditions. Furthermore, 

count data alone do not necessarily reveal the quality of service on a roadway facility. The HCM 

and other methodologies can be used to estimate LOS, but given the input data are mostly 

representative of the expected demand of a typical day created from adjusting the count of a 

specific day by adjustment factors, the resulting outputs are themselves also a rather broad 

estimation. The effects are likely greater for signalized facilities where representative counts 

would be used in addition to representative signal timing. The process of actuation can 

frequently result in green times that are considerably different from those used to define the 

timing plan. The HCM recommends the use of actuated green times for such cases, but these are 

often difficult to obtain. 

For freeway facilities, speed sensors are frequently employed for monitoring purposes. Several 

different detector technologies are used, including inductive loops in a speed trap arrangement or 

radar. This permits the real-time monitoring of speeds throughout the network. Many urban areas 
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have had such monitoring capabilities in place since the 1990s, or earlier. Point speeds are less 

useful on surface streets given the presence of traffic control, which induces delays at 

intersections, meaning there is no one point along any roadway segment that can capture a 

representative speed that relates to what a typical average speed might be along a segment 

containing stops, signals, or other traffic control devices. There is also the burden of installing 

and maintaining the system of detectors. For a high-traffic urban area, the costs of excessive 

congestion seem to have justified installation of such monitoring systems in the past, but these 

capabilities are most often limited to the most critical portions of the network. 

This, then, is the starting point for the present research study. Over the past decade or so, several 

new data sets have entered into common usage. These have been employed for a variety of uses 

that will be discussed in the following sections, but they have not previously been used in 

tandem to establish a methodology for determining portions of the system most in need of 

operational improvement. 

2.3 Crowdsourced Probe Vehicle Data 

Probe vehicles are those for which travel is recorded by an observer. For many years, floating car 

studies were used to generate this type of data, originally with the use of a stopwatch and the 

vehicle odometer, and more recently with the assistance of Global Positioning System (GPS) 

devices. Floating car studies are labor intensive, given someone must be paid to drive the 

vehicles along the roadway, and several trips are needed to obtain a final travel time at a high 

confidence level (Quiroga and Bullock 1998). To try to avoid bias, drivers are often instructed to 

pass as many vehicles as they are passed by when executing a floating car run, or to follow the 

average speed of the traffic around them according to their judgment. These studies can 

potentially be biased by driver judgment or driving characteristics (Turner et al. 1998). 

Over the years, various methods have emerged to obtain naturalistic probe vehicle data through 

observations of road users. This shifting of the core activity in probe vehicle data collection from 

the agency to the public has been called crowdsourcing. In the past, license plate studies were 

used for this purpose, in which observers recorded license plates and the times of observation at 

multiple locations and calculated the time between matches to obtain travel time. More recently, 

the proliferation of smartphones, navigation devices, and other such equipment among the public 

has made it possible to obtain similar identifiers through wireless communication, such as 

Bluetooth MAC addresses (Wasson et al. 2008). Data that use a vehicle identifier are called 

automatic vehicle identification (AVI) data. Such data are now in rather widespread use, with 

many vendors selling equipment that can collect a variety of identifiers and report travel-time 

information to the end user. A limitation of these data types is that they require the installation 

and maintenance of equipment in the field to obtain it. 

The ubiquity of GPS-equipped smartphones has also opened up a separate avenue of collecting 

data on vehicle movement, by continuously tracking device positions over time. Such data are 

called automatic vehicle location (AVL) data. As the vehicle moves through the network, an 

onboard device obtains its location from its GPS feature and records it with a timestamp. Many 

smartphone applications harvest this information in exchange for service provided to the user. 
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Some of these applications may immediately retrieve the location, whereas others may store it 

and wait to do so when it is convenient. In either case, position data of many vehicles are 

collected in a repository. These AVL data are extremely common today and are used to support 

many functions such as the traffic status layer supported in the maps available in most 

smartphones or on websites such as Google Maps. 

Figure 1 provides an example of raw AVL data.  

 

Figure 1. Vehicle records from a sample AVL data set 

Every dot on the map is the location of one timestamped record of a vehicle position. The traces 

of the individual vehicles are not visible, because the dots are not connected, but it is clear that 

the dots tend to follow the road network. As the map shows, the location of the observations is 

sometimes imprecise. A map-matching process is required to snap the locations to roadways and 

establish the vehicle path. 

Rather than using raw AVL data directly, most agencies instead use derivatives of these data. 

One common type of data is probe vehicle average segment speeds, which consists of the mean 

speed on a predefined segment within regular time intervals. The NPMRDS is an example probe 

vehicle data set of this type, consisting of average speeds recorded once for every five-minute 

interval for a set of predefined roadway segments. The segmentation scheme used for the 

NPMRDS is the traffic message channel (TMC) segments, which are generally rather long 
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segments spanning, for example, from interchange to interchange on freeways. Data providers 

also supply such data commercially at a higher spatial and temporal resolution. The Iowa DOT, 

for example, purchases data from INRIX that have a time resolution of one minute, and segments 

using a different definition that has a better spatial resolution. These are called XD segments (a 

brand name) and are intended to be about 1 mile in length. While the longer TMC segments may 

span several miles between interchanges, the shorter and more consistent length XD segments 

would likely break up the same distance across several segments. 

An example of average speed data is presented in Figure 2.  

 

Figure 2. Example average speed (mph) per segment 

The data shows westbound travel through a work zone on I-80 near Coralville, Iowa during a 

Wednesday afternoon from 4:00–4:30 p.m. on October 7, 2020. The data shows evidence of 

slowed traffic on segments labeled 68.0 and 72.6, which are referenced to the start of I-80 on the 

eastern side of the state. The locations of the segments are shown in Base map image © 2021 

Google Maps 

Figure 3, which displays the locations of the segment endpoints.  

 
Base map image © 2021 Google Maps 

Figure 3. Locations of segment endpoints 
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For example, segment 68.0 starts at the point labeled 68 in the map, and continues to 68.6, which 

shows that this segment is located right past the interchange of I-80 and I-380. The combination 

of westbound traffic on I-80 and merging traffic from I-380 is likely related to the speed 

reduction here. Meanwhile, segment 72.6 is on an isolated segment on the left side of the map, 

and the speed reduction is likely due to work zone activities. 

These types of data have some utility for developing these relatively detailed views but are also 

useful for monitoring roadway performance at a high level. In Iowa and several other states, the 

data are used to create reports of roadway performance. An example is the interstate delay cost 

report shown in Figure 4.  

 
https://reactor.ctre.iastate.edu/interstate-delay-cost-summary/  

Figure 4. Interstate congestion report for 2020 

Figure 4 shows the estimated delay cost per section, with a top 10 list of sections with the highest 

delay. As the table shows, the sections are longer than the XD segments used to create the 

previous view. The section corresponding to the work zone area shown in the previous figures is 

the fourth item on the list (Section 68 on I-80). Probe vehicle data from various providers have 

been widely used for about 10 years by various agencies for similar applications (Day et al. 

https://reactor.ctre.iastate.edu/interstate-delay-cost-summary/


8 

2016, Hainen and Dunn 2015, Iowa State University 2021, Michigan DOT 2020, Missouri DOT 

2020, Pujara et al. 2019). 

Most of these applications have focused on the performance of the interstate highway system. 

However, signalized arterials have also been analyzed through the use of probe vehicle data. A 

concern with the use of average speed per segment is whether traffic control would introduce 

dynamics that might be lost in the creation of an average. Researchers at the University of 

Maryland recommended that probe vehicle data be used for arterial highways with volumes 

exceeding 20,000 vehicles per day, a sparse density of traffic signals, low to moderate midblock 

friction, and with dominant through movements (Young 2014). Another study by researchers at 

the University of Washington found that travel times estimated from probe vehicle segment 

speed data had many more errors than those obtained from AVI data sources (Wang et al. 

2014a). Still another study by researchers in Virginia compared probe vehicle data against 

Bluetooth AVI data, finding that the probe data are appropriate for evaluating long-term traffic 

state changes but are not useful for real-time applications (Hu et al. 2016a). Another study in 

Virginia applied probe vehicle data to an evaluation of adaptive signal control (Hu et al. 2016b). 

In Indiana, probe vehicle data were applied to rank the performance of signalized arterials 

throughout the state using travel times measured from probe vehicle data (Day et al. 2015a). This 

was used to establish a performance measure that incorporated both delay, as measured using the 

travel time as a percentage of the speed limit travel time, and the standard deviation of the travel 

time (also normalized to the speed limit travel time). This was used to rank the corridor 

performance according to both the central tendency and amount of variability in travel 

characteristics. A similar analysis was done for the Pennsylvania DOT a few years later, which 

included an assessment of improvements to arterial corridors throughout the state (Mathew et al. 

2017). 

Figure 5 shows an example graphic from the Pennsylvania DOT study.  
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Mathew et al. 2017, Pennsylvania DOT 

Figure 5. Before-after trends related to adaptive control system implementation for five 

arterial corridors in the Philadelphia area 

Figure 5 shows the central tendency metric (median travel time) along the horizontal axis and the 

variability metric (interquartile range, IQR) along the vertical axis. Both the metrics are 

normalized to the speed limit travel time. For example, 100% along the horizontal axis means 

that the median travel time is the same as travel time at the speed limit, while 30% along the 

vertical axis means that the interquartile range (the difference between the 75th and 25th 

percentiles of travel time) is equal to 30% of the travel time at the speed limit. Each symbol 

represents the system state for a particular range of dates; the circular symbols represent a before 

period, and the triangular symbols represent an after period, with a line joining the two symbols 

that form a comparison pair.  

There are two comparison pairs per corridor, because each corridor had two directions of travel 

that were analyzed separately. The green symbols indicate improved performance, the red 

symbols indicate worsened performance, and the orange symbols indicate that one axis saw 

improvement, whereas the other did not. The chart indicates that the overall system saw mostly 

net improvements for 6 out of 10 corridors/directions, while another 3 of them saw improvement 

in one dimension of performance, and while one other corridor saw worse performance. The 

public benefit of these changes was estimated at $24 million (Mathew et al. 2017). 

This example is relevant to Iowa, because Pennsylvania takes a similar approach to management 

of signalized corridors, in that local agencies manage the signals on state highways. 

Pennsylvania made about $75 million in investments in signal systems through its Green Light-

Go program from 2014–2019 (Pennsylvania DOT 2020). Probe vehicle data were already being 
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purchased by the Pennsylvania DOT for other purposes. Cross-referencing the data set with a 

record of investments made under the statewide signals program permitted the benefits analysis 

to be accomplished. 

In addition to average segment speeds provided by INRIX and HERE Technologies, there are 

some other data vendors that use AVL data to provide different kinds of traffic analytics. The 

Iowa DOT has purchased access to the StreetLight Data, Inc. analytics suite. Within this tool, the 

user is able to perform travel pattern analysis by manually defining gateways that delineate 

where vehicles would enter or exit a zone, and travel to and from other gateways can be 

identified from the data. The main use case for the data seems to be origin-destination (O-D) 

analysis, AADT estimation, and other count data. StreetLight Data volumes have been evaluated 

by several external studies for Minnesota, Oregon, Virginia, Louisiana, and Texas, with the 

following results: 

• A 2020 study conducted by Texas Transportation Institute for the Minnesota DOT found an 

absolute error of 8%–10% for locations with AADT greater than 10,000, increasing to 42% 

for locations with AADT less than 1,000 (Turner et al. 2020). 

• A 2019 study for Oregon DOT found 18% median absolute percent error comparing AADTs 

versus automatic traffic recorder data (Roll 2019). 

• A 2020 study for Virginia DOT found mean absolute percent error (MAPE) of 7.1% for 

locations with AADT greater than 70,000, increasing to 18.2% for locations with AADT less 

than 10,000 (Yang et al. 2020). 

• A 2020 study for Louisiana DOT reported a MAPE of 18.9% in StreetLight AADTs in 

comparison with permanent count stations (Codjoe et al. 2020). Other volume comparisons 

such as full-month and 24-hour counts had much higher errors. 

• A 2020 study for Texas DOT focusing on the border region found a MAPE of 44.7% for 

locations with AADT greater than 10,000; a MAPE of 26.6% for AADT of 5,001–10,000; 

and MAPE of 33.6% for AADT less than 5,000 (Tsapakis et al. 2020). 

The results of these AADT evaluations appear to vary considerably by location, and in most 

cases, the accuracy seems to improve for locations with higher volumes, although this is not 

always the case. AADTs alone are not sufficient to determine the quality of service on a 

roadway; it would be preferable to measure the roadway performance through vehicle travel 

times or other such measures. A search for results on this performance measure did not find any 

independent evaluations of travel time, although such data were mentioned as being available 

from StreetLight Data, Inc. The Virginia DOT report mentioned the placement of gateways 

around intersections to collect turning movement counts (Yang et al. 2020). However, the 

possibility of measuring delays or other such operational outcome measures was not explored in 

that study. 

The raw version of AVL data remains an alternative data source and one that has a great deal of 

promise for evaluating details of intersection operations. This has been demonstrated in several 

studies in the past decade (Hofleitner et al. 2012, Wang et al. 2014b, Wolf et al. 2019, Wünsch et 

al. 2015). However, until very recently, data vendors had not begun marketing use of their data 

for this purpose. At the time of this present study, new data products are emerging that are being 
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marketed as permitting a deeper analysis of signal operations. An example is the INRIX U.S. 

Signals Scorecard, which used a week of data to evaluate the performance of signals at 210,000 

intersections in the US (INRIX n.d.). Such data sources are still in their infancy and have not yet 

been evaluated, but it seems that as the quantity of AVL data continues to increase, data for 

evaluating signalized intersections are likely to become increasingly available in the future. 

2.4 Automated Traffic Signal Performance Measures 

Traffic signals are present on many important facilities throughout any roadway network. While 

it would be difficult to estimate, it would not be too specious to guess that a majority of all trips 

by motor vehicle involve the passage through at least one traffic signal. They often control the 

ingress and egress from freeways, and signal timing is one of the primary determinants of the 

LOS on major surface streets of many cities and towns. Signalized intersections are frequently 

equipped with detection systems to provide for actuated control. For many years, traffic signals 

had very limited data collection capabilities. Many traffic controllers possessed native 

capabilities to record volume and occupancy data, typically collected in 5- or 15-minute 

intervals, to support traffic responsive operation, while some central system software for 

remotely programming traffic signals have included the capability of monitoring actuated green 

times. 

Starting in the mid-2000s, researchers began collecting what has been called event-based data 

(Smaglik et al. 2007) or high-resolution data (Hu and Liu 2013), which consist of a record of the 

state changes in the detector inputs and the signal head outputs of a traffic signal. Such events 

include, for example, the time when a detector turns on or off (i.e., when a detector input state 

transitions from low to high or from high to low), and when a signal output changes from green 

to yellow to red, and so forth. High-resolution data can also capture some internal controller 

events that do not necessarily have a direct visual output, such as times of pattern changes or 

whether an actuated phase terminated because all its demand is served or because its maximum 

green time has expired. Numerous performance measures have been developed from these data 

that can be used to evaluate traffic signal operation (Day et al. 2014, 2015). This data source can 

yield some information about details of that operation that are not easy to be obtained by other 

means. The resulting performance measures are today known as ATSPMs. ATSPMs were 

selected as a focus technology in the fourth round of the FHWA’s Every Day Counts program 

and are today in use at an increasing number of intersections. 

A very basic example of how ATSPMs may be used to examine details of signal operation is 

presented in Figure 6.  
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Day et al. 2015b, Purdue University 

Figure 6. Green time during each signal cycle, arranged by phase, before and after a 

change to the splits at an actuated-coordinated intersection 

Figure 6, which shows data from 9 a.m. to 3 p.m., contains eight charts arranged in the form of a 

phase diagram, which show how much green time was given to each phase in each cycle. In this 

example, 4% of the cycle was taken from phases 2 and 6 and given to phases 3 and 8. The 

shifting of the resulting green from the black before line to the red after line confirms the 

decrease in green times for phases 2 and 6, and the increases for phases 3 and 8. Because the 

signal is actuated-coordinated, one could speculate that when phase 3 does not use all of its 

programmed split, phase 4 that follows it could potentially access some of the yielded time. 

However, the chart shows virtually no change in the green time for phase 4, meaning that phase 

3 utilized all of the time it received. 

Additional metrics can be developed when measures of demand, such as count or occupancy, are 

taken into consideration. The availability and configuration of detection determines the type of 

metrics and level of detail that can be achieved from such an analysis. Where count data are 

available, the v/c ratio can be calculated (Smaglik et al. 2007), while stop bar occupancy data 

enables the number of split failures to be estimated from cycles in which a phase has a high level 

of occupancy during green and during a portion of the red time (Freije et al. 2014). When 

combined with overall measures of the intersection utilization, it is possible to determine where 

spare capacity exists and where there are opportunities to improve the signal timing by adjusting 

splits (Day et al. 2010a). 

In addition to capacity allocation, another operational area critical to corridor performance is the 

quality of signal coordination. Where advance (setback) detectors are available, vehicle arrivals 

at the intersection can be measured and their times of arrival compared against the signal state to 

ascertain whether more vehicles are arriving in green or during red, which corresponds to good 

or poor coordination (Day et al. 2010b). An example of a detailed graphical performance 

measure for this purpose, called a coordination diagram, is presented in Figure 7.  
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Day et al. 2015b, Purdue University 

Figure 7. Coordination diagram showing 24 hours of operation at a signalized intersection 

The diagram shows arrivals (dots) during green (shaded region) for one signal approach. The 

basic idea is that every vehicle arrival is represented by a dot, and each arrival is charted 

according to the time of day it occurs (horizontal axis) and the time in cycle when it occurs 

(vertical axis). The signal state is superimposed on top of this, so that the green shaded regions 

represents when the signal is green, meaning that most of the dots coincident with this region 

arrived during green, and the others arrived during red. In brief, the more dots in green, the better 

the coordination. The performance can also be summarized using the POG as a single 

quantitative metric. 

Many other details about the signal operation can be inferred from the chart. For example, the 

cycle length is indicated by the fluctuating red line in the figure, which shows the varying time 

between the beginning of red in each cycle and the previous beginning of red. During the late 

night and early morning periods, the cycle length is often very long, reflecting times when the 

signal rests in green on the major street while there is no side-street traffic. From 6:00 a.m. to 

10:00 p.m., the signal is coordinated, and the cycle length varies from about 90–120 seconds, 

with minor variations due to the use of early yield. There are also individual cycles when the 

cycle length is unusually high or low, which is associated with preemption events that appear to 

cause the major street phase to be extended for a long period of time. 

While these performance measure views present a highly microscopic view of the signal 

operation, it is also possible to use the data to develop corridor- and system-level views of 

performance through aggregation. This sort of aggregation can potentially be more helpful if it is 

undertaken from a perspective of identifying opportunities for improvement (Day et al. 2018). 

That is, rather than simply finding the average performance or the worst-performing movement 

in the system, it is possible to take into consideration whether enough flexibility exists at the 

intersection to allow for retiming.  
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An example of a system-level scorecard is presented in From Day as presented at Every Day Counts (EDC-4) 

workshop in Helena, Montana, August 2018  

Figure 8.  

 
From Day as presented at Every Day Counts (EDC-4) workshop in Helena, Montana, August 2018  

Figure 8. Example of system level ranking 

From Day as presented at Every Day Counts (EDC-4) workshop in Helena, Montana, August 2018  

Figure 8 shows the results of a system-level analysis are presented for eight arterial corridors that 

have between 7 and 15 intersections. The overall score is shown at the bottom; this reflects the 

worst score out of five sub-scores. These sub-scores evaluate the corridor’s performance 

according to the following criteria: 

• Communication: Are intersections online and recording data? 

• Detection: Are most of the detectors in working order? The following four heuristic scores 

are included that define different ways that detectors could fail: 

o H1: Detectors are not reporting any data. 

o H2: Detectors are reporting erroneous data (overcounting). 
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o H3: The signal is constantly cycling during overnight hours when it should not be. 

o H4: Pedestrian button is stuck (pedestrian phase is constantly called). 

• Safety: Are there a high number of red-light runners? 

• Capacity: Are movements at intersections receiving adequate green time? 

• Progression: Is traffic being progressed at coordinated intersections? 

Thus, with the use of ATSPMs, it is possible to obtain a variety of data covering numerous 

maintenance and operations issues. In particular, the considerations of capacity and progression 

would be relevant to assessing the operational performance of a corridor. However, ATSPMs do 

require a certain amount of infrastructure to enable their use including the following: 

• A means of data collection is required. Many recent signal controller models possess the 

capability of logging high-resolution data. There are also third-party devices that can be used 

with controllers that lack this capability. 

• Detection at the intersection is needed to measure demand and utilization. In many cases, 

existing detection can be used for this purpose. However, intersections that do not have 

working detection or that have movements that do not include detection will be able to report 

a rather limited amount of information. 

• Communication to the intersections is needed to automatically download the high-resolution 

data. Otherwise, it may be possible to store the data on site and retrieve it periodically, 

although some controllers have limited storage space. 

• A system that processes the data or yields performance measures would also be necessary to 

be able to make better use of the data. One such system option is the open-source software 

released by the Utah DOT. Several vendors offer a product to do the same. At the time of this 

present study, there were still limited options for performing aggregation from detailed 

intersection- and movement-based performance up to system-wide views. 

2.5 Connected Vehicle Data 

At the time of the study, new data sets are emerging that can provide a more detailed view of 

vehicle travel than existing data sets and a host of driving-related events. For the purpose of this 

report, these data will be called connected vehicle (CV) data, although that name has varied 

meanings depending on its context. The most basic definition of a CV is a vehicle that possesses 

some capability of automatic, two-way communication with other vehicles, infrastructure, and 

devices such as smartphones, in a manner that is integrated with the vehicle systems such that 

internal information available through those systems can be shared. This includes not only the 

vehicle position and speed as measured through GPS devices but other data from the various 

systems used in running the vehicle: steering, braking, turn signals, lights, windshield wipers, 

etc. This marks the main difference between CV data and the type of information obtainable 

through transported mobile devices, which are used to develop probe vehicle data described 

previously. CV data can provide the same position and speed information, as well as additional 

information about vehicle-system events. 

There are two pathways for this type of data to be obtained by transportation system operators. 

One way to obtain CV data is for it to be received in communication between vehicle onboard 



16 

units (OBUs) and roadside units (RSUs) installed as part of road infrastructure. One of the 

applications of this environment would be to broadcast the state of traffic signals through RSUs, 

in signal phase and timing (SPaT) messages. Vehicles would receive these messages and be 

informed about the current and future state of a traffic signal. Additionally, vehicles could 

communicate their position, speed, etc. through basic safety messages (BSMs) back to the RSU 

and to other vehicles. This could be used for applications such as collision avoidance, for 

example, by advising a driver to stop to avoid running a red light, or advising drivers on 

conflicting approaches that a vehicle appears to be about to run a red light.  

To date, there have been various pilot deployments of RSUs, but they are very far from being 

ubiquitous. It is not immediately clear whether the data could have uses beyond real-time 

applications such as those described herein. For example, the U.S. DOT has stated that CV 

technology “does not involve exchanging or recording … vehicle movements” (U.S. DOT n.d.), 

which would seem to imply that any movement records would be limited to simple paths in the 

range of one RSU, e.g., the passage of vehicles through one intersection. 

Another path for the data is through auto manufacturers and their partners, which receive the 

information not through RSUs but through cellular communication. Auto manufacturers collect 

these data, and in the past few years, a few companies have begun to sell both the raw data and 

derivatives of it. Again, the difference between these data and the probe vehicle data described 

previously is that CV data include information from vehicle systems, so information such as hard 

braking can be obtained in addition to positions and speeds. Because the data are not being 

collected by RSUs, concerns about managing the data process and dealing with privacy concerns 

are effectively transferred to the private sector. 

An example of hard-braking events data is shown in Figure 9.  

 
Mathew et al. 2020, Purdue University and Wejo Ltd. with data used under Creative Commons license. 

Figure 9. Hard-braking events per mile on northbound I-65 in Indiana  

0

500

1000

1500

2000

2500

3000

3500

4000

0 20 40 60 80 100 120 140 160 180 200 220 240 260

N
u

m
b

er
 o

f 
H

ar
d

 B
ra

ki
n

g 
Ev

en
ts

Mile Marker

May Jun Jul Aug Sep Oct



17 

Figure 9 shows the number of observed hard braking events on each mile of northbound I-65 in 

Indiana during six months in 2020. The data were obtained from an open-source data set 

consisting of extracted time and mile location of events (Mathew et al. 2020, 2021). The number 

of observed events seems to increase in the proximity of urban centers (Louisville near mile 0, 

Indianapolis between mile 100 and 120, and the greater Chicago area near mile 260). There 

appear to be other hot spots outside of those areas as well, likely near freeway entrances or exits. 

The results are rather intuitive, but this early view from the data set yields sensible results, and it 

is likely that more insights can be gained from the data in the future, with deeper analysis and 

linking to other traffic data sets.  

2.6 Summary 

This chapter examined data sources that could be used for development of an OICL. After briefly 

discussing conventional data sources such as traffic volumes or speed measurements by 

detectors, the chapter focused on two data sets that have some utility for OICL development, 

because they can capture some information about roadway operation. One of these is probe 

vehicle data, in particular AVL data that captures vehicle speeds. The Iowa DOT is already 

purchasing segment speed data from one provider, and these data are available for both interstate 

and non-interstate routes. Another data set is high-resolution data, which is associated with 

ATSPMs. At the time of the study, there were limited deployments of ATSPMs in Iowa, but it 

seems likely that such data will become more commonly available in the future. This data set 

permits the development of detailed metrics about signal operation. Finally, the chapter 

concludes with a discussion of emerging data sets that include both vehicle position and speed 

information as well as driving events such as hard braking.  
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3. EVALUATING CORRIDOR OPERATION WITH SEGMENT SPEED DATA 

3.1 Introduction 

The Iowa DOT currently purchases segment speed data from INRIX to support a variety of 

operational analyses. While much of the emphasis on mobility reporting has been focused on the 

performance of the interstate system, these data are also available for other types of roadways. 

This chapter explores the use of that data for evaluating the performance of signalized corridors 

in Iowa to support the development of an OICL. 

3.2 Identifying Locations for Corridor Ranking 

The first step in performing a ranking of signalized corridors in Iowa was to identify the 

locations of traffic signals in the state. To do so, the locations of signals in Open Street Maps 

(OSM) (www.openstreetmap.com) were used. Intersections with traffic signals are often 

(although not always) marked with signal icons. Roads with more than two lanes are sometimes 

represented in OSM with two separate one-directional roadway elements, and when these 

intersect other roadways, sometimes two or four signal icons are produced, as shown in Figure 

10.  

 
©OpenStreetMap contributors (www.openstreetmaps.org)  

Figure 10. Example of an intersection with additional traffic signal icons 

In some cases, even more signal icons may be generated, for example, in the case where a road 

has separate lane groups (e.g., channelized right turn lanes) that are represented in OSM as 

separate roadways. It is possible to obtain the coordinates of these icons by querying for these 

http://www.openstreetmaps.org/
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locations using an application programming interface (API), such as Overpass Turbo (overpass-

turbo.eu). 

Figure 11 shows the locations of signalized intersections recorded by OSM in Ames, Iowa.  

 
©OpenStreetMap contributors (www.openstreetmaps.org)  

Figure 11. Locations of signalized intersections in Ames, Iowa, according to OSM 

The OSM marking of signals is not perfect; there are several missing intersections, such as those 

on Grand Avenue north of 13th Street, and on Lincoln Way between North Dakota Avenue and 

Sheldon Avenue. There is also the issue of multiple signal icons located at the site of one 

signalized intersection. However, these data proved to be a useful starting point, with additional 

visual confirmation used to confirm signal locations and to add other intersections by a visual 

examination of major roads in urban areas, with the help of the OSM data.  

Figure 12 shows the locations of signalized intersections from OSM across Iowa, while Figure 

13 shows the confirmed locations based on visual comparison with satellite images on Google 

Maps. From this analysis, there are an estimated 2,300 signalized intersections within Iowa. 

http://www.openstreetmaps.org/
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©OpenStreetMap contributors (www.openstreetmaps.org)  

Figure 12. Locations of signalized intersections in Iowa, according to OSM 

 
Base map image © 2021 Google Maps 

Figure 13. Locations of signalized intersections in Iowa after visually confirming locations 

and identifying additional signals from satellite images 

http://www.openstreetmaps.org/
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3.3 Obtaining and Processing Travel-Time Data 

After defining corridors, the next step was to identify segments passing through the corridors. 

This was done by comparing the signal locations confirmed in the previous process against the 

INRIX XD segment shapefile. This was a manual selection process. Altogether, about 250 

corridors were defined, as shown in Figure 14. Each corridor includes two directions of travel. 

 

Figure 14. Distribution of signalized corridors in Iowa selected for ranking 

Data were obtained from the data repository used by the Institute for Transportation (InTrans) 

Real-Time Analytics of Transportation Data Laboratory (Reactor Lab) for storing data. At the 

time of this analysis, the data were being migrated from an in-house server to a cloud server, and 

there were some time periods for which data were unavailable in 2019 and 2020. To mitigate the 

effects of missing data, the corridor ranking was performed using selected data on Wednesdays 

in June, September, and December of both 2019 and 2020. Those months had mostly complete 

data in both years.  

An example of the travel-time data for one corridor is shown in Figure 15.  
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Figure 15. Travel times for an example corridor, including periods of unavailable data 

Figure 15 includes only data for which a score value of 30 was available, indicating data from 

real-world observations. Despite the periods of missing data evident in this figure, there remains 

quite a bit of useful data remaining about the performance of this corridor. This chart contains 

approximately half a million travel-time observations from the two-year period. The impact of 

traffic reductions during the COVID-19 pandemic is also evident in this diagram, with 

considerably lower travel times appearing in 2020 as compared to 2019. Altogether, there were 

over 600 million individual travel-time observations for all corridors across both years, of which 

ultimately 3 million were used for the ranking analysis for the selected months, days of week, 

and times of day. 

The character of the travel-time data for arterials is revealed by a closer examination of the raw 

data, as presented in the next few figures. Figure 16 shows a 24-hour view of the data along with 

counts of the number of observations.  
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Figure 16. Data for June 12, 2019 and number of observations per hour 

This analysis is similar to an analysis done several years ago on a different signalized corridor 

using INRIX data for a 24-hour period in 2013 (Day et al. 2015a), except that the data are now 

more complete, with most of the hours of the day reporting nearly complete coverage and only a 

few gaps in the middle of the night.  

An even closer look at the data is presented in Figure 17, which shows the value for each minute 

during the noon hour for the same data shown previously.  
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Figure 17. Minute-by-minute travel-time data 

Note for Figure 16 and Figure 17 that data are shown for Eastbound 23rd Avenue in Council 

Bluffs, Iowa. 

The travel time varied from 1.0 to 1.7 minutes, which is a lot of variation. This road segment is 

0.7 miles long, so the corresponding speed range was 25–42 mph. This is likely due to the stop-

and-go nature of interrupted flow facilities, which likely affects the observed speeds of the probe 

vehicles seen within each minute. The methods of the data provider, number of probes, and so 

forth are not public information, so the dynamics that yield this variation can only be speculated 

upon. 

Travel time for a corridor was calculated as the sum of the travel time on all of the segments 

comprising each corridor. The 250 corridors varied from including a single segment to as many 

as 16 segments. A travel time was calculated for every one-minute interval using whatever data 

were recorded in that interval. This was feasible because the data set was relatively complete for 

the busy hours of the day, as illustrated in Figure 16. If one segment was missing a travel-time 

record for the minute, the missing record was substituted with travel time representing travel at 

the free-flow speed. Overall, about 60% of all the minute-segment pairs had real data from which 

travel-time estimates could be generated. 

After obtaining a travel time for each corridor for each minute, the next step was to aggregate the 

travel times and produce metrics reflecting their average value and the reliability of the travel 

time. Standard deviation was used as a measure of variability/reliability. The aggregations were 

done across all of the data within one year for the months selected previously. Separate 

aggregations were done for the a.m. peak, midday, and p.m. peak. Thus, each corridor had six 

sets of values in the end for the three time-of-day periods and for the years 2019 and 2020. 
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Because each corridor has a different length and speed limit, its average and standard deviation 

values were normalized by using the travel time at the free-flow speed given respectively in the 

following equations: 

=n

F

x
x

t
  (1) 

=n

F

s
s

t
  (2) 

where x and s are the average and standard deviation of travel time, respectively; xn and sn are the 

normalized average and standard deviation, respectively; and tF is the travel time at the free-flow 

speed. 

A PI was used to rank the corridor performance, incorporating the normalized average value xn 

and the normalized standard deviation sn. To bring the two metrics into a single quantitative 

measure, the Euclidean distance to a point {xn, sn} was calculated by the following equation: 

2 2= +n nPI x s   (3) 

In general, the lower the value of the PI, the better the performance of the corridor. The ideal 

value of the PI is 1.0, which represents travel at the speed limit with perfect reliability (i.e., no 

variation whatsoever). A separate PI value was calculated for each direction of travel on each 

corridor, for each time of day. The maximum value of the PI was used for the final value of the 

corridor used in the ranking. 

3.4 Ranking of Signalized Corridors by Travel Time and Travel-Time Reliability 

The results of the ranking analysis are shown by Figure 18.  
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Figure 18. Pareto sort of signalized corridor performance 

Figure 18 is a Pareto-sorted diagram showing the performance of the top 200 corridors for each 

year. As can be seen in the diagram, about 20 corridors out of the entire list appear to have a 

markedly higher PI than the others, as seen by the inflection point in the curve close to rank 20. 

It is also clear that PI was much lower in 2020 across the board. A breakdown of the PI by time 

of day is presented in Figure 19, which shows that similar trends are evident within each of the 

three time-of-day periods.  

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 20 40 60 80 100 120 140 160 180 200

P
er

fo
rm

an
ce

 I
n

d
ex

Rank Order

2019 2020



27 

 

Figure 19. Pareto sort by time of day 

Another view of the difference in the PI between 2019 and 2020 is presented in Figure 20.  

 

Figure 20. 2020 vs. 2019 performance: corridors with decreased PI (less congestion) 
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Figure 20 shows the amount of decrease in the PI, superimposed on top of the 2019 value of the 

PI. The data are sorted by the amount of decrease. Overall, the PI decreased by about 25%–33% 

as a result of reduced traffic volumes during the COVID-19 pandemic. Finally, the top 10 most 

congested locations in 2019 and 2020 are presented respectively in Table 1 and Table 2. 

Table 1. Top 10 most congested arterial corridors in 2019 

No. Location PI 

1 7th Street, Des Moines 4.76 

2 Washington Street, Waterloo 4.52 

3 Wesley Parkway, Sioux City 4.39 

4 North Dubuque Street, Iowa City 3.56 

5 CR D-20, Iowa Falls 3.11 

6 IA 130, Davenport 3.05 

7 23rd Avenue, Council Bluffs 3.04 

8 IA 1, Iowa City 3.02 

9 3rd Street, Des Moines 2.77 

10 East San Marnan Drive, Waterloo 2.74 

 

Table 2. Top 10 most congested arterial corridors in 2020 

No. Location PI 

1 7th Street, Des Moines 3.35 

2 North Dubuque Street, Iowa City 3.28 

3 IA 130, Davenport 2.76 

4 CR D-20, Iowa Falls 2.55 

5 Gordon Drive, Sioux City 2.50 

6 Southeast Corporate Woods Drive, Ankeny 2.46 

7 Wesley Parkway, Sioux City 2.40 

8 9th Avenue, Council Bluffs 2.36 

9 Ingersoll Avenue, Des Moines 2.33 

10 East Mullan Avenue, Waterloo 2.14 

 

3.5 A More Detailed Look at Changes between 2019 and 2020 

In 2020, the COVID-19 pandemic induced many changes in transportation activities around the 

world. In the US, many states enforced quarantines starting in March, and although many of 

those were lifted relatively quickly, many organizations encouraged employees to work from 

home in the following months. As a result, traffic volumes decreased substantially, with 

reductions in volumes of up to 60%–65% reported in some places (ITE n.d.). This situation 

offered an opportunity to use the corridor data developed for this chapter’s analysis to visualize 

overall system performance. The charts presented previously show these results in the composite 

corridor PI, but the components of that PI are able to reveal additional information. 
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Table 3 presents a summary of the changes between 2019 and 2020 for the 250 corridors 

analyzed in this study, by time of day.  

Table 3. Summary of performance outcomes 

Condition a.m. Midday p.m. 

Better 154 131 127 

Neutral 9 30 33 

Worse 1 3 4 

Insufficient data in 2020 37 37 37 

 

Better indicates that both the mean travel time and standard deviation of travel time decreased, 

neutral means that one of these increased while the other decreased, and worse indicates that 

both increased. There were 37 corridors for which there were insufficient data from 2020 to 

perform a comparison. As Table 3 reveals, the vast majority of corridors saw improved 

performance, with lower travel times most likely due to the reduced traffic volumes. Detailed 

views of these data are given by Figure 21, Figure 22, and Figure 23 respectively for the a.m. 

peak, midday, and p.m. peak.  

 

Figure 21. Normalized standard deviation versus normalized mean, a.m. peak 
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Figure 22. Normalized standard deviation versus normalized mean, midday 

 

Figure 23. Normalized standard deviation versus normalized mean, p.m. peak 
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These figures show the movement of the system state from 2019 to 2020, with the triangular 

symbol representing the after case, with color coding of green for better, yellow for neutral, and 

red for worse performance. This shows not only the trend but the magnitude of the change. There 

are many corridors with very substantial decreases in both mean and standard deviation of the 

travel time. However, this is not universal. There are also quite a few corridors that had neutral 

outcomes; for most of these, the average travel times increased slightly, while the standard 

deviation of travel time decreased for many. Finally, there are a handful of corridors for which 

the performance worsened for a particular time of day. However, as earlier results showed, when 

combined into an overall index, there were no corridors that saw overall worse performance than 

2019.  
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4. EVALUATING INTERSECTION OPERATION WITH HIGH-RESOLUTION DATA 

4.1 Introduction 

Whereas the segment speed data explored in the previous chapter are able to provide insights 

about corridor performance, the data do not provide much insight about the performance of 

crossing streets on those corridors, nor do they differentiate between different movements on 

signalized approaches. Thus, to investigate the operation of different movements at intersections, 

it is necessary to augment such data with another data set that has such capabilities. In this study, 

the high-resolution data used for ATSPMs are employed. 

During the course of the OICL project, high-resolution data became available in the Iowa cities 

of Cedar Rapids and Dubuque. Cedar Rapids deployed data collection at many intersections 

throughout the city. During the time when data were being collected, detector configurations 

were being adjusted, complete documentation of the detection for the entire system was not 

immediately available, and dates when detection changed were not known for the entire time 

period. Although the detector assignments were not known, it was still possible to assess the 

quality of operation by examining the tendency of phases to use all of their assigned green time. 

Meanwhile, Dubuque deployed data collection at selected intersections, mostly along the US 20 

corridor. These intersections had well-defined detection, with setback detection for measuring 

vehicle arrivals available at a few of the intersections. 

These two data sets permitted two studies of high-resolution data for ranking intersection 

performance in Iowa. In the first study, high-resolution data from Cedar Rapids were used to 

rank locations according to movement and intersection capacity utilization, as well as estimated 

opportunities to improve by rebalancing splits. In the second study, high-resolution data from 

Dubuque were used to calculate measures of progression performance, and these were compared 

against the INRIX segment speed data to determine whether they are correlated. 

4.2 Ranking of Intersections with ATSPM Data 

To perform intersection ranking, high-resolution data from 143 intersections in Cedar Rapids 

were collected during the months of January to June of 2020. For this analysis, all of the 

Wednesdays in the data set were used. The high-resolution data contain a record of the reason for 

phase termination (e.g., why the end of green occurred). A signal phase roughly corresponds to a 

movement at an intersection (their association can be more nuanced, but for the purpose of this 

discussion, they will be considered roughly synonymous). There are four possible situations of a 

phase within every cycle: 

• A phase may gap out, meaning that the green ends before the maximum amount of time has 

elapsed. This implies that there was a relatively low amount of demand in the previous cycle. 

• A phase may max out, meaning that the green ends after it has been given the maximum 

amount of green time. This implies that there was a relatively high amount of demand in the 

previous cycle. 
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• A phase may force off, which has the same meaning as max out, except that the signal is 

coordinated, and the maximum green time is determined by the split of the phase rather than 

a maximum green parameter. 

• A lack of any record of activity on the phase within a cycle indicates that the phase was 

skipped or omitted. 

To assess the level of phase utilization, a basic comparison was made between the numbers of 

force-offs and max-outs (FOMOs) versus gap outs and phase omits/skips. Previous studies have 

shown that a comparison of phase termination distributions offers a way to obtain basic 

information about actuated signal operation without any knowledge of the detector configuration 

(Li et al. 2013). The first step was to identify all of the instances of each phase. A phase instance 

is defined as a pair of intervals delineated by the start and end of green, as shown in Figure 24.  

 

Figure 24. Association of phase state and events logged in high-resolution data 

A red interval is assumed to lead to a green interval; this order is used because vehicles that 

arrive during red must wait until after the start of green to proceed through the intersection (Day 

et al. 2010a). Events 1 and 8 were used to identify the start and end of green. The yellow interval 

was included with the red interval for purposes of this analysis. 

Next, the phase instances were matched to the termination events to identify whether the instance 

ended with a gap out, max out, or force off. In the Cedar Rapids data set, during all of the 

Wednesdays occurring across a six-month time frame, there were 13.7 million phase instances, 

of which 6.1 million ended in gap out, 1.5 million ended in max out, 6 million ended in force off, 

and about 50,000 ended without any phase termination code. 

Omitted or skipped phases do not have any record, so to determine whether a phase is skipped, it 

is necessary to find the beginning and end of each cycle and find whether a beginning of a green 

event occurs within that interval for each phase. If so, that time can be used to find the relevant 

phase instance and termination code. If no beginning of green time is found, then the phase is 

either skipped or omitted. 
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To find cycle boundaries, the general structure of the phase and ring assignments must be 

known. For this study, it was assumed that all of the intersections in the Cedar Rapids area 

follow the dual-ring, eight-phase configuration. First, an ordered list of phase instance times was 

assembled. From this list, it was possible to see the order in which phases are served. Cycle 

boundaries were identified when the signal controller transitions from phases {1, 2, 5, 6} to 

phases {3, 4, 7, 8}. The reason for this is that the coordinated or major street through phases are 

usually served within group {1, 2, 5, 6}. Although that is not always true, this definition 

generally works well to find cycle boundaries. There is also a barrier crossing event, but in the 

researchers’ experience, this event is less reliable.  

Once the cycle times were known, it was possible to then match phase instances to cycles and 

find whether each phase was skipped/omitted or whether it gapped out, maxed out, or forced off 

in each cycle. Next, to simplify the remaining ranking tasks, the percentages of phase 

skips/omits, gap outs, and FOMOs were calculated by hour. 

Figure 25 shows the distribution of omits (skip/omit), gap outs, and FOMOs for all the 

Wednesdays across the six-month period, for two example intersections exhibiting rather 

different behavior. 

 

Figure 25. Distribution of phase terminations by date, and by phase, at two intersections 

For Signal 221207, phases 3, 5, and 7 were always omitted, so these phases probably do not exist 

at this intersection. Phase 1 was occasionally served, but it was often omitted. Phases 4 and 8 

frequently gapped out, although they had FOMO events at times, particularly in the middle of the 

day. Finally, phases 2 and 6 had rather typical coordinated phase behavior, with constant FOMO 

during the day—given coordinated phases typically serve the maximum amount of green time 

(except when early yield is used, which did not seem to be the case at this intersection)—and 

many gap-out events during non-coordinated, early morning operation. Signal 332318 exhibited 

similar dynamics, but all eight phases were in use. 
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The next step in the analysis was to determine which phases had useful data for analysis. Phases 

without any variation in their phase termination events are typically not very useful, because this 

lack of variation is due to some cause such as the following: 

• Phases that are constantly omitted are not in use. 

• Phases that constantly FOMO are operating in max recall, meaning they are given the 

maximum amount of green time in each cycle for some reason. One reason may be that the 

phases are coordinated, which as previously mentioned in the example is a typical 

configuration of coordinated phases. It is also possible that the phase might have a detector 

error placing a constant call. Finally, the phase might operate under max recall by design, 

e.g., at a pretimed or semi-actuated signal. 

The phases that were absent for a particular intersection were excluded. To accomplish this, the 

data set was filtered to exclude all phases for which percentages of being omitted were equal to 

100% throughout the entire data set. After excluding these not-in-use phases, the phases that 

were coordinated or under max recall were identified. The percentages of FOMO for such phases 

will mostly be higher, but not necessarily 100% at all times of day. The reason for this is that 

such phases are often operated differently during low-volume conditions. For example, in late 

night and early morning hours, intersections are often allowed to run in a free or fully actuated 

mode, and in that case, the phase that is ordinarily coordinated will be allowed to gap out when 

there is no demand. Figure 26 shows the phase termination chart for phase 2 at 10 different 

signals.  

 

Figure 26. Examples of phase 2 termination for identifying coordinated phases 

Signal 551502 appeared to have phase 2 in max recall, given it constantly FOMOs. Signal 

441401 had typical coordinated behavior with FOMO during most of the day and gap out at 

night. Signals 440404 and 440405 appeared to be fully actuated at all times of day. 
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When the percentage of FOMO exceeded 80% for 12 or more consecutive hours, the phase was 

considered to be either coordinated or under max recall. These criteria appeared to effectively 

identify phases that should be excluded, based on visual analysis of the performance of the 

excluded phases. 

Another possibility that needed to be considered was that phases might have encountered a 

detector failure at some time during the study period. In this case, it would have been expected 

that the phase would exhibit normal behavior but suddenly fall into a pattern of constant FOMO. 

In Figure 26, signal 442407 seemed to exhibit this type of behavior, with constant FOMO 

occurring starting from April 1, 2020. Because this phase was identified as a coordinated phase 

based on prior criteria, it was already excluded from the data set. To identify a phase affected by 

detector error, the research team searched for any phase for which FOMO was equal to 100% for 

more than 24 consecutive hours. However, the team did not identify any phases exhibiting such 

behavior that were not already excluded from the analysis in previous steps. 

After excluding omitted phases, coordinated/max recall phases, and phases affected by detector 

errors, the researchers proceeded with the intersection ranking. A separate ranking was 

undertaken for three time-of-day periods: a.m. peak (6:00 a.m.–9:00 a.m.), midday (9:00 a.m.–

3:00 p.m.), and p.m. peak (3:00 p.m.–7:00 p.m.). This analysis was possible for 130 

intersections. Eighteen intersections had to be excluded from the ranking because they had no 

phases remaining to be analyzed after the previous phase exclusions. 

Two criteria were employed for establishing criteria to rank the intersections. The first of these 

identified the worst-performing phase, whereas the second identified the overall capacity 

utilization. The intent was to locate problems using the first criterion and assess overall 

intersection utilization with the second criterion. Later, the two criteria were combined to 

identify opportunities for improvement by finding intersections with heavy utilization of any 

phase, but with low overall intersection utilization. The idea was inspired by a previously 

developed methodology that used v/c ratio and degree of intersection saturation (Day et al. 

2010a), but given the detector assignments were not known for many of the intersections in this 

case, the concept was applied to the distributions of phase termination. 

The first criterion was the average maximum percentage of FOMO of any phase at each 

intersection (i.e., the worst-performing phase). The FOMO percentages were calculated for each 

time-of-day period for each day in the data set. Next, the average rate of FOMO was calculated 

by taking the mean value across all of the dates for each phase. Finally, the maximum value was 

taken of all the phases at the intersection. The purpose of the maximum value was to allow any 

phase exhibiting capacity deficiencies to stand out rather than be lost in an intersection average. 

The second criterion was the average number of phases at each intersection having FOMO 

percentages greater than 50% (i.e., overall intersection utilization). The FOMO percentages were 

again calculated for each time-of-day period for each day in the data set. Next, the research team 

determined the percentage of phases for which this value exceeded 50%. Finally, the average of 

this value was taken across the data in the data set to obtain the final number for ranking. 
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The outcomes of the intersection ranking are presented in the next few figures and tables. The 

first criterion found locations of the worst-performing phase in the system by time of day. Figure 

27 shows a Pareto diagram of the ranking value by intersection, for each time of day separately.  

 

Figure 27. Pareto diagram of average maximum percent FOMO by intersection 

A Pareto diagram is simply a ranked list of the resulting values for each data series, without any 

connection between the rank of the item among the different data series. This offers a way to 

view the distribution of values. Often, such charts exhibit a Pareto principle, also known as the 

80/20 principle, wherein 80% of the activity is attributable to 20% of the population. In this case, 

there does seem to be a very slight inflection point around the upper quintile. That is, the slope is 

slightly steeper to the left of the vertical line at rank 25 (approximately the upper quintile). In 

addition, looking at the placement of the lines, it seems that the midday has more congestion than 

the a.m. peak, while the p.m. peak has still more congestion.  

Table 4 provides a listing of the top five intersections by time of day according to the average 

maximum percent FOMO. 
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Table 4. Intersection ranking results based on average maximum percent FOMO 

TOD Intersection 

Mean 

value Rank 

a.m. peak 

Blairs Ferry Road NE & C Avenue NE 81.1% 1 

Collins Road NE & Lindale Drive NE 74.7% 2 

Collins Road NE & C Avenue NE 69.7% 3 

Edgewood Road NE & 42nd Street NE 69.2% 4 

29th Street NE & I-380 69.1% 5 

Midday 

Blairs Ferry Road NE & C Avenue NE 91.6% 1 

Collins Road NE & C Avenue NE 89.9% 2 

Collins Road NE & Twixt Town NE 84.4% 3 

Collins Road NE & Council Street NE 82.2% 4 

Collins Road NE & Lindale Drive NE 81.6% 5 

p.m. peak 

29th Street NE & Prairie Drive NE 100.0% 1 

1st Avenue E & Lindale/Home Depot 99.1% 2 

Blairs Ferry Road NE & C Avenue NE 96.5% 3 

Collins Road NE & C Avenue NE 94.7% 4 

Blairs Ferry Road NE & 10th Avenue NE 92.1% 5 

 

The results from Table 4 were largely found to align well with experiences of the traffic 

engineering staff in Cedar Rapids, although a few intersections were unexpected. The 29th Street 

NE and I-380 a.m. peak was not expected and would warrant deeper investigation. The 

intersection of 29th Street NE and Prairie Drive was a marginally warranted signal. High values 

at the intersections along 29th Street were likely affected by area construction. 

A Pareto diagram for the second criterion is shown in Figure 28.  
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Figure 28. Pareto diagram of average number of phases with FOMO above 50% 

Figure 28 represents the overall level of utilization of each intersection, as opposed to the worst-

performing phase at the intersection. The diagram also appears to exhibit the Pareto principle 

with the slope of the line taking an upward turn to the left of the first quintile (around Rank 25). 

The top five intersections by time of day are shown in Table 5.  

Table 5. Intersection ranking using average number of phases with FOMO above 50% 

TOD Intersection 

Mean 

value Rank 

a.m. peak 

Blairs Ferry Road NE & I-380 62.5% 1 

A-B Avenue NE & 1st Street NE 61.1% 2 

Collins Road NE & C Avenue NE 55.1% 3 

Wilson Avenue SW & I-380 50.0% 4 

29th Street NE & Prairie Drive NE 47.2% 5 

Midday 

A-B Avenue NE & 1st Street NE 100.0% 1 

Collins Road NE & Twixt Town NE 78.8% 2 

Collins Road NE & Lindale Drive NE 73.7% 3 

Edgewood Road NE & Highway 100 68.1% 4 

Collins Road NE & C Avenue NE 66.7% 5 

p.m. peak 

A-B Avenue NE & 1st Street NE 100.0% 1 

Collins Road NE & Lindale Drive NE 80.5% 2 

Collins Road NE & Twixt Town NE 79.7% 3 

Collins Road NE & C Avenue NE 77.7% 4 

Collins Road NE & Council Street NE 66.5% 5 
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Table 5 shows the busiest intersections at each time of day. There are some intersections with 

very high utilization; during the midday and a.m. peak, one of them has 100% utilization 

according to this criterion. The results shown in the table also largely agreed with experiences of 

traffic engineering staff in Cedar Rapids, with the exception of the 19th Street intersection 

which, as mentioned previously, was likely affected by construction during the study period. The 

A-B Avenue location is another anomaly, which represents a single controller operating two 

intersections that will be removed in the future. 

After developing the rankings using the previously described criteria, the researchers identified 

the intersections where possibilities for improvement are likely to exist. In general, this is 

expected to be the case in situations where an intersection has a low overall utilization (the 

second criterion, mean percent of phases with FOMO above threshold)—meaning there is green 

time that can be redistributed—and at least one phase with high utilization (the first criterion, 

high average maximum percent FOMO)—meaning there is one phases that needs more green 

time. 

Figure 29 shows a diagram of the two criteria.  

 

Figure 29. Scatterplot comparing the two criteria 

Each dot represents the result for one intersection, for a particular time of day. The horizontal 

axis represents the worst-performing phase at the intersection, while the vertical axis represents 

the overall intersection utilization. Points that are closer to the lower right portion of the curve 

represent situations where there are phases with high utilization, yet the intersection has low 

utilization. To find candidate locations, the research team filtered the intersections by average 

maximum percent FOMO greater than 50% and mean percent of phases above threshold less 

than 25%, as indicated by the dashed line in Figure 29.  
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Next, the data were examined for each of these to find that each intersection had both one phase 

with high utilization along with another phase with low utilization that could potentially give up 

green time to the high-utilization phase. For this study, these exchanges were limited to phase 

pairs within phase concurrency groups (i.e., the phase pairs {1,2}, {5,6}, {3,4}, and {7,8}). 

Table 6 presents the results of this analysis.  

Table 6. Phase pairs warranting additional investigation for potential split rebalancing 

Intersection 

Phase 

pairs 

10th Street SE & 3rd Avenue SW 1-2, 3-4 

Edgewood Road NW & F Avenue NW 1-2, 5-6 

Kirkwood Boulevard SW & US 30 1-2, 5-6 

6th Street SW & 33rd Avenue SW 3-4, 7-8 

32nd Street NE & Oakland Road NE 1-2, 5-6 

Blairs Ferry Road NE & 10th Avenue NE 1-2, 5-6 

C Avenue NE & Boyson Road NE 1-2, 5-6 

Blairs Ferry Road NE & Council Street NE 1-2, 5-6 

Collins Road NE & Northland Avenue NE 5-6 

Collins Road NE & Council Street NE 5-6 

 

The list in Table 6 shows 10 intersections where the analysis indicates that there are pairs of 

phases for which operation would be worthwhile to examine in greater detail to identify 

opportunities for improvement by rebalancing splits. 

4.3 Comparison of ATSPM and INRIX Travel Times 

To gain additional insight about the use of INRIX data for signalized arterials, the researchers 

compared performance measures with the two data sets to identify whether there was any 

correlation between the average minute speeds in the INRIX data and the measures of the quality 

of progression in the high-resolution data. Correlation between the two data sets can indicate the 

suitability of using INRIX data for corridor-level analysis in the absence of high-resolution data. 

The research team estimated a series of econometric models to investigate correlation between 

these variables. Data from January and February of 2020 along US 20 in Dubuque, Iowa were 

employed. 

US 20 in Dubuque is one of the busiest roadways in that region of the state, connecting one of 

two Mississippi River crossings with points west of Dubuque. The roadway passes through eight 

signalized intersections, as shown in Figure 30.  
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Figure 30.Intersections with high-resolution data and INRIX XD segments on US 20 in 

Dubuque 

Figure 30 also shows the locations of the INRIX XD segments that pass through those eight 

intersections. After receiving high-resolution data and detector mapping information from the 

city, the research team first investigated the quality of performance measures that could be 

extracted from these data. For this study, the focus was on corridor operation, so the team 

examined performance measures aimed at evaluating coordination, specifically the POG. To 

ascertain whether the detector data existed to permit this analysis, the team began by creating 

coordination diagrams (Day et al. 2010b) for each of the approaches among the eight 

intersections. 

Figure 31 presents one of these diagrams for eastbound US 20 and University Avenue; this 

intersection exhibits very good coordination, with most of the vehicle arrivals (dots) occurring 

during the green intervals (green shaded regions).  
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Figure 31. Coordination diagram from westbound US 20 and University Avenue, January 

28, 2021 

The dots in this figure are dense, with counts that are of the same order of magnitude as the 

roadway AADT, and this location can be used for further analysis.  

Figure 32, in contrast, shows a very irregular pattern.  

 

Figure 32. Coordination diagram from eastbound US 20 and Century Drive, January 28, 

2021 

The figure shows that there are periods with no detection, which is not likely to be due to a lack 

of traffic during those time periods. The arrivals appear to be random, but this is unlikely 

because there is a neighboring coordinated intersection within 1 mile. Finally, there are high 

amounts of detections during the early morning period. In summary, these detector data are not 

believable. 
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After examining the setback detector data for all of the intersections, the research team found 

that the two easternmost intersections in the system (US 20 and University Avenue and US 20 

and Devon Drive) appeared to have good detection in both directions. These two intersections 

are associated with three INRIX segments, as shown in Figure 30. One segment in the eastbound 

direction passes through both of the intersections, and in the westbound direction, there is one 

segment passing through each intersection. US 20 and Devon Drive is the first intersection of the 

corridor in the westbound direction, and it has random arrivals, while US 20 and University 

Avenue is the next intersection and has platoons (as shown in Figure 31). In the eastbound 

direction, both of the approaches have platoons, because they are at the end of the corridor in that 

direction. Thus, there are three different comparison pairs. 

Data from all days of January and February were used for the comparison. The day was divided 

into 5- and 15-minute intervals for which all of the dependent and independent variables were 

calculated. This eliminated issues with some individual minutes of speed data missing 

observations throughout the day, as well as variations in the cycle length by time of day. For 

each interval, three different performance measures were calculated from the high-resolution 

data as follows: 

• The POG was calculated by counting the number of arrivals (detections) occurring during 

green and dividing by the total number of arrivals during the interval. 

• The v/c ratio was calculated by dividing the total number of arrivals during the interval by 

the capacity, determined by the total amount of green time occurring in the interval 

multiplied by the saturation flow rate. For this study, a saturation flow rate of 1,800 

vehicles/hour (0.5 vehicles/second) was used. 

• The percent of time that the signal was green was calculated by dividing the total amount of 

green time in the interval by the total interval duration. This is equivalent to the green-to-

cycle (g/C) ratio used in the HCM analysis. 

In addition to these, indicator variables were established for the day of week and time of day. 

The time-of-day variables were determined using changes in the traffic pattern, which were 

determined from the coordination events that are written in the high-resolution data when a new 

time-of-day plan is implemented by the controller. The dependent variable for this comparison 

was the average speed. To calculate speed, only those records of the INRIX data having a score 

of 30 (indicating actual observations) were included. These data sets were then compiled into 

tables containing all of the variables for all the 5- and 15-minute periods in January and 

February.  

The independent variables are summarized in Table 7. 
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Table 7. Independent variables for INRIX and high-resolution data comparison 

No. 

Independent 

variable Type Code/Range 

1 POG Quantitative 0–1 

2 Day of week Categorical 
Monday, Tuesday, Wednesday, 

Thursday, Friday, Saturday, Sunday 

3 Time of day Categorical 5, 9, 19, 37, 45, 55, 64, 254 

4 v/c ratio Quantitative 0–1.3 

5 Green duration (%) Quantitative 0–1 

 

Figure 33 shows a scatterplot and correlation matrix for all the quantitative variables in the data 

set for the westbound segment passing through US 20 and University Avenue.  

 

Figure 33. Scatterplots and distributions of quantitative variables 
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Figure 33 is arranged with each square showing a comparison between variables as indicated by 

the labels at the top and right sides of the diagram. The diagonals show histograms that represent 

the spread of the data. The lower left squares show scatterplots that illustrate the potential 

correlation between variables. The upper right squares show the correlation coefficients. The 

magnitude of this number represents the strength of the linear relationship between the two 

variables, while the sign of the number indicates whether the variables are positively or inversely 

correlated. 

These results show that the duration of green is highly correlated to the POG and to the v/c ratio. 

Similar results were obtained for other segments. Because these variables are likely to contribute 

similar information to the model, the research team included only one of them in the regression 

models. In addition, it is apparent that the average speed correlates with the independent 

variables. 

Next, the data were organized to begin creating regression models. Because there were three 

INRIX segments, three models were created. However, because one of the INRIX segments 

contained two intersections, there were various options for combining the independent variable 

data for those two intersections (e.g., whether to include them as separate variables or combine 

them into an average value).  Because the eastbound INRIX segment passes through two 

intersections, the research team developed two models with different sets of variables. In one 

case, the team considered separate quantitative variables for the two intersections and in another 

case average values of the variables were considered. Thus, the team ended up with five models 

altogether. 

The scatterplot of INRIX average speed versus POG shows that there is a positive linear 

relationship between the two variables. Therefore, a starting point for the analysis was to 

consider a very simple linear model for average speed as a function of POG (i.e., with one 

independent variable). However, the R2 values obtained for these simple models were not very 

high. This indicated that a very low percentage of variation in the observed values of average 

speed could be explained by the linear regression model with POG. To improve the models, the 

day-of-week indicator variable was included, which yielded minor improvement of the R2 values. 

Next, the time-of-day indicator variable was added, which greatly increased the R2 values of the 

models in all cases. Two additional models were considered by adding v/c ratio and green 

duration to the previous model. The five regression models that were considered are shown in 

Table 8Error! Reference source not found..  

Table 8. Regression models 

No. Model 

1 Average speed ~ POG 

2 Average speed ~ POG + Day of week 

3 Average speed ~ POG + Day of week + Time of day 

4 Average speed ~ POG + Day of week + Time of day + v/c ratio 

5 Average speed ~ POG + Day of week + Time of day + Green duration 
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Models with interval lengths of 15 minutes performed better in terms of R2 values compared to 

those with 5-minute interval lengths. Model outputs for interval lengths of 15 minutes are shown 

in the following tables. 

Table 9 shows the regression model outputs for the westbound segment passing through the 

intersection of US 20 and Devon Drive.  

Table 9. Regression model outputs (US 20 and Devon westbound segment) 

Independent variable 

Dependent variable: 

Average speed 

Model 1 Model 2 Model 3 Model 4 Model 5 

POG 10.58*** 10.70*** 6.53*** 5.13*** 
 

Day: Monday 
 

0.99*** 0.28 0.24 0.33 

Day: Saturday 
 

1.20*** -0.13 0.03 -0.07 

Day: Sunday 
 

2.84*** 1.47*** 1.19*** 1.54*** 

Day: Thursday 
 

-0.12 -0.02 0.09 0.06 

Day: Tuesday 
 

1.22*** 0.51** 0.56*** 0.53** 

Day: Wednesday 
 

1.55*** 0.78*** 0.81*** 0.84*** 

Timing plan: 5 
  

-4.00*** -1.96*** -3.92*** 

Timing plan: 9 
  

-4.48*** -2.52*** -4.50*** 

Timing plan: 19 
  

-2.93*** -0.40* -2.81*** 

Timing plan: 37 
  

-3.40*** -0.66* -3.27*** 

Timing plan: 45 
  

-1.79*** 0.33 -1.65*** 

Timing plan: 55 
  

-5.39*** -2.58*** -5.28*** 

Timing plan: 64 
  

-8.24*** -8.53*** -8.18*** 

Timing plan: 254 
  

0.93*** -0.49*** 0.72*** 

v/c ratio 
   

-6.76*** 
 

Green duration (%) 
    

8.15*** 

Intercept 31.99*** 30.86*** 35.36*** 38.10*** 34.57*** 

Observations 4,297 4,297 4,297 4,297 4,297 

R2 0.09 0.13 0.37 0.41 0.37 

Adjusted R2 0.09 0.12 0.36 0.40 0.37 

Residual Std. Error 4.46 4.37 3.72 3.60 3.70 

F Statistic 410.47*** 87.65*** 165.48*** 183.02*** 169.83*** 

*p<0.1; **p< 0.05; ***p<0.01 

The R2 value for Model 1 is only 0.09, which means that the model with POG cannot explain the 

variations in average speed very well. The addition of other categorical and quantitative variables 

to this model improved the value of R2. R2 was the highest for Model 4 with two categorical and 

two quantitative variables. All the variables considered were statistically significant at 0.05 level 

of significance. For all the models, p-values from F-tests were statistically significant, which 

indicates there is strong evidence that the regression models are significant in explaining the 

variation in average speed.  
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The model outputs for the westbound segment passing through the intersection of US 20 and 

University Avenue are shown in Table 10.  

Table 10. Regression model outputs (US 20 and University westbound segment) 

Independent variable 

Dependent variable: 

Average speed 

Model 1 Model 2 Model 3 Model 4 Model 5 

POG 28.92*** 28.46*** 14.51*** 6.28*** 
 

Day: Monday 
 

0.18 0.26 -0.02 0.28 

Day: Saturday 
 

0.26 -0.83*** -0.37* -0.61*** 

Day: Sunday 
 

1.71*** 0.88*** 0.40* 0.70*** 

Day: Thursday 
 

0.55* 0.23 0.48** 0.37* 

Day: Tuesday 
 

0.55* 0.64*** 0.81*** 0.70*** 

Day: Wednesday 
 

0.71** 0.86*** 1.05*** 0.94*** 

Timing plan: 5 
  

-5.39*** -1.11*** -2.94*** 

Timing plan: 9 
  

-6.87*** -1.35*** -4.22*** 

Timing plan: 19 
  

-4.77*** -0.96*** -2.32*** 

Timing plan: 37 
  

-4.89*** -0.69* -2.61*** 

Timing plan: 45 
  

-2.34*** 0.07 -1.88*** 

Timing plan: 55 
  

-7.00*** -2.00*** -4.41*** 

Timing plan: 64 
  

-7.68*** -12.74*** -11.29*** 

Timing plan: 254 
  

2.99*** 0.61*** 1.29*** 

v/c ratio 
   

-19.12*** 
 

Green duration (%) 
    

20.27*** 

Intercept 9.37*** 9.21*** 23.49*** 33.97*** 20.08*** 

Observations 4,042 4,042 4,042 4,042 4,042 

R2 0.34 0.34 0.58 0.64 0.63 

Adjusted R2 0.34 0.34 0.58 0.64 0.62 

Residual Std. Error 5.05 5.03 4.02 3.72 3.80 

F Statistic 2,057.30*** 302.41*** 374.25*** 452.64*** 448.96*** 

*p<0.1; **p< 0.05; ***p<0.01 

For this segment, the values of R2 obtained are comparatively better than those obtained for the 

previous segment. The results were similar in terms of significance. P-values from F-tests were 

statistically significant for all the models as before. Model outputs also showed that each of the 

variables is statistically significant in predicting average speed.  

Table 11 and Table 12 show the regression model outputs with different sets of quantitative 

variables for the eastbound segment that contains both the intersections.  
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Table 11. Regression model outputs with separate quantitative independent variables for 

each intersection (eastbound segment with two intersections) 

Independent variable 

Dependent variable: 

Average speed 

Model 1 Model 2 Model 3 Model 4 Model 5 

POG (Devon) 0.76* 0.75* 2.11*** 1.95*** 
 

POG (University) 34.13*** 33.74*** 27.77*** 18.67*** 
 

Day: Monday 
 

1.37*** 0.63*** 0.74*** 0.94*** 

Day: Saturday 
 

1.16*** -0.23 0.23 -0.20 

Day: Sunday 
 

1.46*** 0.45** 0.31 1.24*** 

Day: Thursday 
 

0.36 0.58*** 0.79*** 0.53** 

Day: Tuesday 
 

1.41*** 0.61*** 0.78*** 0.69*** 

Day: Wednesday 
 

1.08*** 0.33 0.68*** 0.63*** 

Timing plan: 5 
  

-0.21 1.40*** -2.94*** 

Timing plan: 9 
  

-4.37*** -1.39*** -5.29*** 

Timing plan: 19 
  

-1.32*** 2.95*** 3.00*** 

Timing plan: 37 
  

-0.22 3.77*** 1.03** 

Timing plan: 45 
  

0.97** 2.37*** 0.86 

Timing plan: 55 
  

-3.58*** 0.62 -2.75*** 

Timing plan: 64 
  

-8.75*** -10.54*** -9.21*** 

Timing plan: 254 
  

3.20*** 1.08*** 2.81*** 

v/c ratio (Devon) 
   

-7.72*** 
 

v/c ratio (University) 
   

-8.19*** 
 

Green duration (Devon) 
    

6.80*** 

Green duration (University) 
    

17.42*** 

Intercept 5.33*** 4.70*** 9.53*** 20.71*** 16.91*** 

Observations 3,996 3,996 3,996 3,996 3,996 

R2 0.64 0.65 0.74 0.77 0.69 

Adjusted R2 0.64 0.64 0.74 0.77 0.69 

Residual Std. Error 4.29 4.26 3.65 3.45 3.96 

F Statistic 3,548.77*** 907.19*** 708.97*** 731.73*** 563.46*** 

*p<0.1; **p< 0.05; ***p<0.01 
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Table 12. Regression model outputs using average values of quantitative independent 

variables (eastbound segment with two intersections) 

Independent variable 

Dependent variable: 

Average speed 

Model 1 Model 2 Model 3 Model 4 Model 5 

POG 25.26*** 25.02*** 14.26*** 8.83*** 
 

Day: Monday 
 

1.94*** 0.86*** 0.75*** 0.75*** 

Day: Saturday 
 

3.19*** -0.19 0.49** -0.19 

Day: Sunday 
 

4.60*** 1.38*** 0.73*** 1.34*** 

Day: Thursday 
 

0.85** 0.37 0.66*** 0.25 

Day: Tuesday 
 

1.95*** 0.84*** 0.99*** 0.74*** 

Day: Wednesday 
 

1.90*** 0.72*** 1.04*** 0.76*** 

Timing plan: 5 
  

-7.74*** -2.01*** -6.15*** 

Timing plan: 9 
  

-12.03*** -4.10*** -9.19*** 

Timing plan: 19 
  

-3.79*** 3.38*** -0.17 

Timing plan: 37 
  

-8.03*** 1.44*** -3.92*** 

Timing plan: 45 
  

-6.46*** -0.77 -2.73*** 

Timing plan: 55 
  

-11.59*** -2.06*** -7.36*** 

Timing plan: 64 
  

-11.45*** -12.60*** -10.74*** 

Timing plan: 254 
  

4.35*** 0.81*** 3.63*** 

v/c ratio 
   

-22.65*** 
 

Green duration (%) 
    

16.90*** 

Intercept 14.54*** 12.71*** 24.77*** 33.14*** 23.71*** 

Observations 4,342 4,342 4,342 4,342 4,342 

R2 0.18 0.21 0.66 0.74 0.67 

Adjusted R2 0.18 0.21 0.66 0.74 0.67 

Residual Std. Error 6.63 6.49 4.24 3.76 4.21 

F Statistic 933.34*** 166.80*** 569.40*** 754.42*** 583.80*** 

*p<0.1; **p< 0.05; ***p<0.01 

The models in Table 11 were developed by considering separate independent quantitative 

variables for the two intersections. Here, slope estimates of POG for the intersection of US 20 

and University Avenue are much higher than those for the intersection of US 20 and Devon 

Drive. This indicates that a 1% increase in POG for the intersection of US 20 and University 

Avenue results in a higher increase in the average speed for this segment. One possible reason 

could be the extent of the segment passing through these intersections. The values of R2 were 

higher than 0.6 in all the models, which indicated that there is strong linear association between 

average speed and the independent variables in consideration. P-values show that all the 

variables and models were statistically significant.  

Similar results were obtained when average values of quantitative independent variables were 

taken as shown in Table 12.  



51 

For the simple model, the value of R2 was very low, but as new variables were added, R2 values 

increased and attained a maximum value of 0.74 for Model 4. For all models, the researchers 

obtained statistically significant p-values for all variables and F-tests.  

Slope estimates in all the models developed in this chapter indicated that the average speed 

decreases with the increase of v/c ratio and increases with the increase of POG and green 

duration. In all cases, Model 4 with four independent variables namely, POG, time of day, day of 

week, and v/c ratio performed better in predicting average speeds in terms of the value of R2. P-

values from all F-tests were statistically significant at 0.01 level of significance, which indicated 

that the independent variables developed using high-resolution data did a better job in explaining 

the variability of INRIX average speed.  
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5. METHODOLOGY FOR OPERATIONAL IMPROVEMENT CANDIDATE LIST 

5.1. Introduction 

The previous chapters discussed the use of segment speed data (in this report, data provided by 

INRIX, which the Iowa DOT uses for mobility assessment) for performing a ranking of corridor 

performance, and the use of high-resolution data for performing a ranking of intersection 

performance. In addition, a comparison of the two data sets was undertaken, which showed that 

the segment speed data had a good degree of correlation with the POG performance measure 

obtained from high-resolution data.  

From these findings, a reasonable approach to undertaking a system-wide assessment of 

performance would use both data sets, which are a good complement to each other. The segment 

speed data are used for evaluating corridor performance, given advance detection is not always 

available, or may not be high enough quality to calculate an accurate POG, whereas the high-

resolution data can be used to assess the performance of crossing street movements, which the 

segment speed data are not generally capable of assessing directly.  

This chapter presents a case study application of data fusion with an application to the city of 

Cedar Rapids, Iowa. 

5.2. Case Study of Cedar Rapids 

In 2019, the city of Cedar Rapids, Iowa implemented the collection of high-resolution data at 

about 150 of its intersections. These data were used for the analysis in Chapter 4. For this 

project, an analysis of corridors included 21 corridors in the Cedar Rapids area. Figure 34 

presents a map illustrating the overlap between the two data sets that were used in this research.  
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Base map image © 2021 Google Maps 

Figure 34. Corridors selected for ranking and signalized intersections with high-resolution 

data in the Cedar Rapids area 

The blue lines show the segments selected for corridor analysis, while the red dots show the 

locations of signals having high-resolution data. Not every signal in the city is equipped with 

high-resolution data collection, and the corridor definitions are not fully comprehensive. 

However, the two data sets provide a coverage of key corridors in the area, including major state 

highways with signalized intersections. 

One thing that this map reveals is that corridors tend to cross each other. While state highway 

networks tend to exclude the denser urban core areas with grid patterns, signalized arterials in 

even moderately built up areas still tend to form such a pattern, and Cedar Rapids has several 

such areas, in particular on its north and west sides. Corridors tend to cross each other at 

signalized intersections, so it is possible for intersections to belong to two corridors (or more if 

the intersection is used as a corridor boundary).  
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To perform a ranking, it is necessary to match corridors to intersections. This was done for the 

Cedar Rapids area, with part of the overall matching matrix shown in Table 13.  

Table 13. Portion of the matrix of intersections to corridors  

Signal ID 

Corridor ID 

230 231 232 234 235 236 237 238 239 240 241 243 245 246 248 249 250 251 252 253 2115 

112118             X                             

112119             X                             

112120             X                             

112121             X                             

131122             X                   X       X 

221203     X                             X       

330342                       X                   

330343                       X                   

330344                     X                     

330345                         X                 

331305                       X       X           

331306                               X           

331307                               X           

331308                         X     X           

331309                         X                 

331310                               X           

331311                               X           

331312                                 X         

331313                                 X         

332318                       X                   

332321                         X                 

332322                         X                 

332323                     X   X                 

333324 X                                         

333325 X                                         

333326 X                                         

333327 X                                         

333328 X                                         

333329 X                                         

 

The full matrix is 147 × 21, so only a portion is included here. Of the 21 corridors defined for 

this study, 17 had intersections with high-resolution data while 4 did not. Of the 147 

intersections included, 12 belonged to more than one corridor, 61 belonged to one corridor, 59 

were not included in any of the defined corridors, and 15 did not have useable data (these are not 

shown on the map). The median number of intersections per corridor (excluding those without 

any intersections) was 6, with individual corridors having between 1 and 11 intersections. 
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5.3. Data Fusion for Comparing Corridors 

Chapter 3 described the development of a corridor PI that considered the travel time and travel-

time reliability of both directions of a corridor across various times of day, while Chapter 4 

described the development of two intersection PIs that either revealed the state of the worst-

performing movement at the intersection, or the overall level of intersection utilization. In this 

section, these developments will be called the worst-movement and utilization intersection PIs. 

Using the intersection-corridor mapping in Table 13, it is possible to obtain all of the intersection 

performance measures for each corridor. This yields an array of as many as 11 intersection-level 

metrics for each corridor, of which two intersection-level metrics are available. The values for 

the various intersections can then be averaged to yield an average intersection performance 

score, or the maximum value taken.  

Table 14 shows a summary of these possibilities and what these aggregated performance 

measures would imply when conducting a ranking of the corridors, while Figure 35 shows charts 

of each possible ranking with values plotted in comparison with the corridor ranking.  

Table 14. Options for aggregating intersection performance measures 

Aggregation 

method 

Intersection worst-movement 

PI Intersection utilization PI 

Average 

(#1) The average is taken of the 

worst-performing movements at 

all the intersections. The corridor 

containing more intersections 

having poorly performing 

intersections rises to the top of 

the list. 

(#2) The average utilization 

of all intersections is taken 

as the corridor score. 

Corridors having a higher 

number of busy 

intersections rise to the top 

of the list. 

Maximum 

value 

(#3) The worst-performing 

movement across all the 

intersections becomes the 

aggregate score. The corridor 

containing the worst-performing 

movement rises to the top of the 

list. 

(#4) The corridor score is 

equal to the level of 

utilization of the busiest 

intersection. Corridors 

having one very busy 

intersection rise to the top of 

the list. 
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(a) Average worst-movement PI 

 
(b) Average utilization PI 

 
(c) Maximum worst-movement PI 

 
(d) Maximum utilization PI 

Figure 35. Options for selecting an aggregated intersection PI 

Note that for Figure 35 the four options are each plotted against the corridor PI. As the charts 

reveal, the choice of the performance measure and the choice of the aggregation method tends to 

cause different corridors to ascend to the top of the chart, thus having the worst performance 

(although there are a few corridors that tend to stay near the top in any case). 

Ultimately, the choice of aggregation depends on the objective of the analyst. If the goal is to 

identify the worst locations, then the maximum-value method makes sense. However, 

considering that intersections may belong to multiple corridors, this value may be less useful for 

ranking corridors. The utilization PI is able to assess the overall usage of capacity, whereas the 

worst-movement method identifies the locations with the most problems. Ultimately, it was 

decided to proceed with method #1 (average worst-movement PI), given it would indicate 

corridors having problem movements at multiple intersections instead of simply containing one 

problem movement. 

The final step was to develop a composite metric that would consider both the corridor and 

intersection PIs. The interpretation of the diagrams in Figure 35 is rather simple: the intersections 

more to the right and further to the top of the chart have worse performance in terms of 

progression or capacity utilization, respectively. An issue with combining the two measures is 

that the corridor PI has a base value of 1, whereas the intersection PI has a range of values 

between 0 and 1. Thus, the tendency would be for the corridor PI to dominate the combined 
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score. To avoid this, the corridor PI was normalized by dividing all values by the maximum 

value obtained in the study.  

Next, the Euclidean distance to the point was calculated by the following equation: 

2 2= +nPI CPI IPI   (3) 

where PI is the combined PI, CPIn is the normalized corridor PI, and IPI is the intersection PI. 

Figure 36 shows the results for the 21 corridors, ranked according to the combined PI, with 

values of the corridor and intersection PIs shown for comparison.  

 

Figure 36. Comparison of corridor, intersection, and combined PI values 

Each of those rankings would independently yield a different ranking, but the combined PI takes 

both into consideration. Note that four of the corridors do not have an intersection value, because 

no high-resolution data were available from any of their intersections. The results of the ranking 

are presented in Table 15. 
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Table 15. OICL for the Cedar Rapids area 

Corridor 

ID Location name 

Corridor 

PI 

Intersection 

PI 

Combined 

PI 

243 Council Street Northeast 2.25 0.50 1.12 

250 IA 100 1.63 0.77 1.06 

249 IA 100 1.91 0.60 1.04 

240 US 151/IA 13 2.34 N/A 1.04 

234 Kirkwood Boulevard Southwest 2.07 0.43 1.02 

241 Boyson Road 1.89 0.55 1.00 

248 32nd Street Northeast 1.86 0.55 0.99 

252 6th Street Southwest 1.84 0.51 0.96 

230 Edgewood Road Northeast 1.95 0.41 0.96 

237 US 151 Business 1.79 0.54 0.96 

245 County Road W56 1.68 0.59 0.95 

2115 US 151 Business 1.68 0.56 0.93 

232 Edgewood Road Southwest 1.83 0.32 0.87 

235 6th Street Southwest 1.81 0.32 0.86 

251 US 151 Business 1.73 0.32 0.83 

253 1st Street Southwest 1.69 0.28 0.80 

246 16th Avenue Southwest 1.68 0.28 0.80 

236 US 151 Business 1.75 N/A 0.78 

231 Mount Vernon Road Southeast 1.49 0.30 0.73 

238 10th Street 1.61 N/A 0.72 

239 East Post Road 1.55 N/A 0.69 

Note: Repeat names indicate different spans of the same roadway. N/A indicates that high-resolution data were not 

available for this corridor. 

The results of the ranking seem to mostly align with the experience of traffic engineers in the 

Cedar Rapids area. The appearance of Council Street at the top of the list was a bit surprising at 

first, but its performance is likely a result of its situation as a lower-priority corridor that crosses 

two other higher-priority corridors that are coordinated. Thus, travelers on Council Street have a 

few locations where they are likely to incur some delay as they cross these other higher-priority 

corridors, which can explain the higher corridor PI value. This highlights the need to connect the 

ranking results with agency objectives. Results for the US 151/Iowa 13 corridor are likely driven 

by poor performance of one particularly high-utilization intersection that is known to have some 

issues with detection. 

5.4. Outlook for Statewide Integration 

This case study focused on the Cedar Rapids area, which was one location in the state of Iowa 

where high-resolution data were available from a large number of intersections. While probe 

vehicle data can be used to compare performance for a large number of corridors, as shown in 

Chapter 3, that data source mostly focuses on the major through movements along the corridor 

and does not necessarily reveal performance of minor movements. To include a greater portion 

of corridors into this analysis beyond the use of probe vehicle data, there would need to be 
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additional data from intersections. However, as discussed in Chapter 2, there are several 

requirements for obtaining such data. It may be a challenge to deploy such technology at a 

statewide level rapidly, although certain locations may have a lower barrier to entry than others. 

In the future, it seems likely that new data sets will be able to provide movement-based 

performance data for intersections, similar to how probe vehicle data currently offers average 

speeds for segments per minute. At present, while there are several data vendors starting to 

market data that could be used for this purpose, or data products that include such information, 

such data are still in their infancy. It seems likely that within the next year, some early research 

on potential applications of such data will be feasible. While the quality of such data sources for 

locations in Iowa is not yet known, it is possible that movement-level data could be obtained in 

the near future without the need for infrastructure, which may have a potential for conducting a 

state-level operational analysis. Although such data would not include signal state data, density 

data at a high enough rate of penetration would make for an effective screening tool to identify 

locations where collection of signal state data would be useful for performing a more detailed 

analysis.  
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6. CONCLUSIONS 

6.1 Report Summary 

This study investigated the potential uses of currently available data sets for the purpose of 

developing an OICL. A review of previous data sets was conducted, as presented in Chapter 2, 

including a survey of legacy data, currently available data, and emerging data sets that are likely 

to become common in the next few years. The review focused on segment speed data and high-

resolution data given their current availability and applicability to OICL development. 

Next, the use of segment speed data to rank facilities at the corridor level was conducted. In this 

study, data from INRIX was used, because the Iowa DOT purchases these data already. Chapter 

3 examined the use of these data for ranking arterial corridors in a study that compared the 

performance of 250 corridors across the state and compared their performance between 2019 and 

2020. In Chapter 4, the use of high-resolution data from traffic signal controllers was explored. A 

case study for Cedar Rapids, which has deployed data collection across most of its intersections, 

was carried out wherein signals were ranked according to criteria developed from the number of 

FOMOs per phase. These performance measures can be implemented readily given they do not 

require knowledge of the detector mapping. A series of criteria were developed to perform an 

intersection-level ranking. In addition, a comparison was made between segment speed data and 

POG values (among other variables) obtained from high-resolution data to ascertain the degree 

to which they correlate with one another.  

Finally, in Chapter 5, the corridor-level and intersection-level metrics were combined to yield a 

composite metric that allowed for the creation of an OICL. This was applied to Cedar Rapids, 

from which both corridor and intersection data were available. 

6.2 Recommendations for Future Research 

The present study uses data that are currently available, although coverage of high-resolution 

controller event data is limited to locations that possess the necessary infrastructure to support it. 

These data are helpful for evaluating the operation of actuated and actuated-coordinated signal 

control, for which actual operation can vary substantially from the programmed settings. This 

would make it challenging to duplicate the present methodology across the entirety of the state. 

However, at the time of this study, some new data sets have been emerging that may make it 

possible to obtain movement-based metrics using probe vehicles or vehicle telematics, which 

would improve the scalability of the method. Future extensions of this study could extend the 

methodology to incorporate this type of data, and provided these data sets yield enough data to 

support it, expand the OICL to include the entire inventory of all 2,300 signalized intersections 

in the state.  

Another area in which the present methodology could be expanded would be to include non-

signalized intersections. This also would likely be assisted through the introduction of 

movement-based probe vehicle data.  
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